| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhm0.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 2 |  | mhm0.y | ⊢ 𝑌  =  ( 0g ‘ 𝑇 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 7 | 3 4 5 6 1 2 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑇  ∈  Mnd )  ∧  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘  0  )  =  𝑌 ) ) | 
						
							| 9 | 8 | simp3d | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐹 ‘  0  )  =  𝑌 ) |