Metamath Proof Explorer


Theorem mhm0

Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses mhm0.z 0 = ( 0g𝑆 )
mhm0.y 𝑌 = ( 0g𝑇 )
Assertion mhm0 ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹0 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 mhm0.z 0 = ( 0g𝑆 )
2 mhm0.y 𝑌 = ( 0g𝑇 )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
5 eqid ( +g𝑆 ) = ( +g𝑆 )
6 eqid ( +g𝑇 ) = ( +g𝑇 )
7 3 4 5 6 1 2 ismhm ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹0 ) = 𝑌 ) ) )
8 7 simprbi ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹0 ) = 𝑌 ) )
9 8 simp3d ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹0 ) = 𝑌 )