Step |
Hyp |
Ref |
Expression |
1 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → 𝑈 ∈ Mnd ) |
2 |
|
mhmrcl1 |
⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) |
3 |
1 2
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
6 |
4 5
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
8 |
7 4
|
mhmf |
⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
9 |
|
fco |
⊢ ( ( 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ∧ 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
10 |
6 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
13 |
7 11 12
|
mhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ) |
18 |
8
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
19 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
20 |
18 19
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
21 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
22 |
18 21
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
24 |
4 12 23
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
25 |
17 20 22 24
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
26 |
16 25
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
27 |
2
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Mnd ) |
28 |
7 11
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
29 |
28
|
3expb |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
30 |
27 29
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
31 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
32 |
18 30 31
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
33 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
34 |
18 19 33
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
35 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
36 |
18 21 35
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
37 |
34 36
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
38 |
26 32 37
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
39 |
38
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
40 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
41 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
42 |
7 41
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
43 |
27 42
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
44 |
|
fvco3 |
⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
45 |
40 43 44
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
47 |
41 46
|
mhm0 |
⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
51 |
46 50
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
53 |
45 49 52
|
3eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) |
54 |
10 39 53
|
3jca |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) |
55 |
7 5 11 23 41 50
|
ismhm |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd ) ∧ ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) ) |
56 |
3 54 55
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |