Metamath Proof Explorer


Theorem mhmcoaddmpl

Description: Show that the ring homomorphism in rhmmpl preserves addition. (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses mhmcoaddmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhmcoaddmpl.q 𝑄 = ( 𝐼 mPoly 𝑆 )
mhmcoaddmpl.b 𝐵 = ( Base ‘ 𝑃 )
mhmcoaddmpl.c 𝐶 = ( Base ‘ 𝑄 )
mhmcoaddmpl.1 + = ( +g𝑃 )
mhmcoaddmpl.2 = ( +g𝑄 )
mhmcoaddmpl.h ( 𝜑𝐻 ∈ ( 𝑅 MndHom 𝑆 ) )
mhmcoaddmpl.f ( 𝜑𝐹𝐵 )
mhmcoaddmpl.g ( 𝜑𝐺𝐵 )
Assertion mhmcoaddmpl ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 mhmcoaddmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mhmcoaddmpl.q 𝑄 = ( 𝐼 mPoly 𝑆 )
3 mhmcoaddmpl.b 𝐵 = ( Base ‘ 𝑃 )
4 mhmcoaddmpl.c 𝐶 = ( Base ‘ 𝑄 )
5 mhmcoaddmpl.1 + = ( +g𝑃 )
6 mhmcoaddmpl.2 = ( +g𝑄 )
7 mhmcoaddmpl.h ( 𝜑𝐻 ∈ ( 𝑅 MndHom 𝑆 ) )
8 mhmcoaddmpl.f ( 𝜑𝐹𝐵 )
9 mhmcoaddmpl.g ( 𝜑𝐺𝐵 )
10 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
11 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
12 ovexd ( 𝜑 → ( ℕ0m 𝐼 ) ∈ V )
13 11 12 rabexd ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 1 14 3 11 8 mplelf ( 𝜑𝐹 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
16 10 13 15 elmapdd ( 𝜑𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
17 1 14 3 11 9 mplelf ( 𝜑𝐺 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
18 10 13 17 elmapdd ( 𝜑𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
19 eqid ( +g𝑅 ) = ( +g𝑅 )
20 eqid ( +g𝑆 ) = ( +g𝑆 )
21 14 19 20 mhmvlin ( ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ) → ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
22 7 16 18 21 syl3anc ( 𝜑 → ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
23 1 3 19 5 8 9 mpladd ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹f ( +g𝑅 ) 𝐺 ) )
24 23 coeq2d ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) )
25 1 2 3 4 7 8 mhmcompl ( 𝜑 → ( 𝐻𝐹 ) ∈ 𝐶 )
26 1 2 3 4 7 9 mhmcompl ( 𝜑 → ( 𝐻𝐺 ) ∈ 𝐶 )
27 2 4 20 6 25 26 mpladd ( 𝜑 → ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
28 22 24 27 3eqtr4d ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) )