Step |
Hyp |
Ref |
Expression |
1 |
|
mhmcoaddpsr.p |
⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
mhmcoaddpsr.q |
⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) |
3 |
|
mhmcoaddpsr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mhmcoaddpsr.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
5 |
|
mhmcoaddpsr.1 |
⊢ + = ( +g ‘ 𝑃 ) |
6 |
|
mhmcoaddpsr.2 |
⊢ ✚ = ( +g ‘ 𝑄 ) |
7 |
|
mhmcoaddpsr.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
8 |
|
mhmcoaddpsr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
mhmcoaddpsr.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
11 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
12 |
11
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
16 |
1 14 15 3 8
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
17 |
10 13 16
|
elmapdd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
18 |
1 14 15 3 9
|
psrelbas |
⊢ ( 𝜑 → 𝐺 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
19 |
10 13 18
|
elmapdd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
22 |
14 20 21
|
mhmvlin |
⊢ ( ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
23 |
7 17 19 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
24 |
1 3 20 5 8 9
|
psradd |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) |
25 |
24
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) ) |
26 |
1 2 3 4 7 8
|
mhmcopsr |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
27 |
1 2 3 4 7 9
|
mhmcopsr |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ 𝐶 ) |
28 |
2 4 21 6 26 27
|
psradd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
29 |
23 25 28
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) ) |