| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmcoaddpsr.p | ⊢ 𝑃  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | mhmcoaddpsr.q | ⊢ 𝑄  =  ( 𝐼  mPwSer  𝑆 ) | 
						
							| 3 |  | mhmcoaddpsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | mhmcoaddpsr.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 5 |  | mhmcoaddpsr.1 | ⊢  +   =  ( +g ‘ 𝑃 ) | 
						
							| 6 |  | mhmcoaddpsr.2 | ⊢  ✚   =  ( +g ‘ 𝑄 ) | 
						
							| 7 |  | mhmcoaddpsr.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 8 |  | mhmcoaddpsr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | mhmcoaddpsr.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 10 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  ∈  V ) | 
						
							| 11 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 12 | 11 | rabex | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 16 | 1 14 15 3 8 | psrelbas | ⊢ ( 𝜑  →  𝐹 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 10 13 16 | elmapdd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 18 | 1 14 15 3 9 | psrelbas | ⊢ ( 𝜑  →  𝐺 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 19 | 10 13 18 | elmapdd | ⊢ ( 𝜑  →  𝐺  ∈  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 21 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 22 | 14 20 21 | mhmvlin | ⊢ ( ( 𝐻  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹  ∈  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝐺  ∈  ( ( Base ‘ 𝑅 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) )  →  ( 𝐻  ∘  ( 𝐹  ∘f  ( +g ‘ 𝑅 ) 𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐻  ∘  𝐺 ) ) ) | 
						
							| 23 | 7 17 19 22 | syl3anc | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ∘f  ( +g ‘ 𝑅 ) 𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐻  ∘  𝐺 ) ) ) | 
						
							| 24 | 1 3 20 5 8 9 | psradd | ⊢ ( 𝜑  →  ( 𝐹  +  𝐺 )  =  ( 𝐹  ∘f  ( +g ‘ 𝑅 ) 𝐺 ) ) | 
						
							| 25 | 24 | coeq2d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  +  𝐺 ) )  =  ( 𝐻  ∘  ( 𝐹  ∘f  ( +g ‘ 𝑅 ) 𝐺 ) ) ) | 
						
							| 26 | 1 2 3 4 7 8 | mhmcopsr | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  𝐶 ) | 
						
							| 27 | 1 2 3 4 7 9 | mhmcopsr | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐺 )  ∈  𝐶 ) | 
						
							| 28 | 2 4 21 6 26 27 | psradd | ⊢ ( 𝜑  →  ( ( 𝐻  ∘  𝐹 )  ✚  ( 𝐻  ∘  𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐻  ∘  𝐺 ) ) ) | 
						
							| 29 | 23 25 28 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  +  𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ✚  ( 𝐻  ∘  𝐺 ) ) ) |