Metamath Proof Explorer


Theorem mhmcoaddpsr

Description: Show that the ring homomorphism in rhmpsr preserves addition. (Contributed by SN, 18-May-2025)

Ref Expression
Hypotheses mhmcoaddpsr.p 𝑃 = ( 𝐼 mPwSer 𝑅 )
mhmcoaddpsr.q 𝑄 = ( 𝐼 mPwSer 𝑆 )
mhmcoaddpsr.b 𝐵 = ( Base ‘ 𝑃 )
mhmcoaddpsr.c 𝐶 = ( Base ‘ 𝑄 )
mhmcoaddpsr.1 + = ( +g𝑃 )
mhmcoaddpsr.2 = ( +g𝑄 )
mhmcoaddpsr.h ( 𝜑𝐻 ∈ ( 𝑅 MndHom 𝑆 ) )
mhmcoaddpsr.f ( 𝜑𝐹𝐵 )
mhmcoaddpsr.g ( 𝜑𝐺𝐵 )
Assertion mhmcoaddpsr ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 mhmcoaddpsr.p 𝑃 = ( 𝐼 mPwSer 𝑅 )
2 mhmcoaddpsr.q 𝑄 = ( 𝐼 mPwSer 𝑆 )
3 mhmcoaddpsr.b 𝐵 = ( Base ‘ 𝑃 )
4 mhmcoaddpsr.c 𝐶 = ( Base ‘ 𝑄 )
5 mhmcoaddpsr.1 + = ( +g𝑃 )
6 mhmcoaddpsr.2 = ( +g𝑄 )
7 mhmcoaddpsr.h ( 𝜑𝐻 ∈ ( 𝑅 MndHom 𝑆 ) )
8 mhmcoaddpsr.f ( 𝜑𝐹𝐵 )
9 mhmcoaddpsr.g ( 𝜑𝐺𝐵 )
10 fvexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
11 ovex ( ℕ0m 𝐼 ) ∈ V
12 11 rabex { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V
13 12 a1i ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
16 1 14 15 3 8 psrelbas ( 𝜑𝐹 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
17 10 13 16 elmapdd ( 𝜑𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
18 1 14 15 3 9 psrelbas ( 𝜑𝐺 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
19 10 13 18 elmapdd ( 𝜑𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
20 eqid ( +g𝑅 ) = ( +g𝑅 )
21 eqid ( +g𝑆 ) = ( +g𝑆 )
22 14 20 21 mhmvlin ( ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ) → ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
23 7 17 19 22 syl3anc ( 𝜑 → ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
24 1 3 20 5 8 9 psradd ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹f ( +g𝑅 ) 𝐺 ) )
25 24 coeq2d ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( 𝐻 ∘ ( 𝐹f ( +g𝑅 ) 𝐺 ) ) )
26 1 2 3 4 7 8 mhmcopsr ( 𝜑 → ( 𝐻𝐹 ) ∈ 𝐶 )
27 1 2 3 4 7 9 mhmcopsr ( 𝜑 → ( 𝐻𝐺 ) ∈ 𝐶 )
28 2 4 21 6 26 27 psradd ( 𝜑 → ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) = ( ( 𝐻𝐹 ) ∘f ( +g𝑆 ) ( 𝐻𝐺 ) ) )
29 23 25 28 3eqtr4d ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻𝐹 ) ( 𝐻𝐺 ) ) )