| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmcompl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mhmcompl.q |
⊢ 𝑄 = ( 𝐼 mPoly 𝑆 ) |
| 3 |
|
mhmcompl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
mhmcompl.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 5 |
|
mhmcompl.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 6 |
|
mhmcompl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) |
| 8 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 9 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
| 10 |
8 9
|
rabexd |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 13 |
11 12
|
mhmf |
⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 15 |
1 11 3 8 6
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 16 |
14 15
|
fcod |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
| 17 |
7 10 16
|
elmapdd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 18 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
| 20 |
1 3
|
mplrcl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐼 ∈ V ) |
| 21 |
6 20
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 22 |
18 12 8 19 21
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 |
17 22
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 24 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
| 25 |
|
mhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) |
| 26 |
5 25
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 28 |
11 27
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
26 28
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 31 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
| 32 |
1 3 27 6
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 33 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 34 |
27 33
|
mhm0 |
⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 35 |
5 34
|
syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 36 |
24 29 15 14 30 10 31 32 35
|
fsuppcor |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) |
| 37 |
2 18 19 33 4
|
mplelbas |
⊢ ( ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ↔ ( ( 𝐻 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∧ ( 𝐻 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 38 |
23 36 37
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |