| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmcopsr.p | ⊢ 𝑃  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | mhmcopsr.q | ⊢ 𝑄  =  ( 𝐼  mPwSer  𝑆 ) | 
						
							| 3 |  | mhmcopsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | mhmcopsr.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 5 |  | mhmcopsr.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 6 |  | mhmcopsr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  ∈  V ) | 
						
							| 8 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 13 | 11 12 | mhmf | ⊢ ( 𝐻  ∈  ( 𝑅  MndHom  𝑆 )  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 16 | 1 11 15 3 6 | psrelbas | ⊢ ( 𝜑  →  𝐹 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 14 16 | fcod | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 ) : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 18 | 7 10 17 | elmapdd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  ( ( Base ‘ 𝑆 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 19 |  | reldmpsr | ⊢ Rel  dom   mPwSer | 
						
							| 20 | 19 1 3 | elbasov | ⊢ ( 𝐹  ∈  𝐵  →  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) ) | 
						
							| 21 | 6 20 | syl | ⊢ ( 𝜑  →  ( 𝐼  ∈  V  ∧  𝑅  ∈  V ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 23 | 2 12 15 4 22 | psrbas | ⊢ ( 𝜑  →  𝐶  =  ( ( Base ‘ 𝑆 )  ↑m  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) ) | 
						
							| 24 | 18 23 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  𝐶 ) |