Step |
Hyp |
Ref |
Expression |
1 |
|
mhmcopsr.p |
⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
mhmcopsr.q |
⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) |
3 |
|
mhmcopsr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mhmcopsr.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
5 |
|
mhmcopsr.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
6 |
|
mhmcopsr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) |
8 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
9 |
8
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
13 |
11 12
|
mhmf |
⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
15 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
16 |
1 11 15 3 6
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
17 |
14 16
|
fcod |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
18 |
7 10 17
|
elmapdd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
19 |
|
reldmpsr |
⊢ Rel dom mPwSer |
20 |
19 1 3
|
elbasov |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
21 |
6 20
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
23 |
2 12 15 4 22
|
psrbas |
⊢ ( 𝜑 → 𝐶 = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
24 |
18 23
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |