Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
3 |
1 2
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
5 |
4
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
6 |
1 2
|
mhmf |
⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
8 |
7
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
9 |
|
fndmin |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
11 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) |
12 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
16 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Mnd ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
19 |
1 18
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
22 |
18 21
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
24 |
18 21
|
mhm0 |
⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
26 |
23 25
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) |
27 |
15 20 26
|
elrabd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
28 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
31 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑆 ∈ Mnd ) |
32 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
33 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
35 |
1 34
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
36 |
31 32 33 35
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
37 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
38 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
39 |
1 34 38
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
40 |
37 32 33 39
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
41 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) |
42 |
1 34 38
|
mhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
43 |
41 32 33 42
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
44 |
|
simplrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
45 |
|
simprr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
46 |
44 45
|
oveq12d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
47 |
43 46
|
eqtr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
40 47
|
eqtr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
49 |
30 36 48
|
elrabd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
50 |
49
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
51 |
50
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
52 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
54 |
52 53
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
55 |
54
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
56 |
51 55
|
sylibr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
57 |
56
|
expr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
58 |
57
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
59 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
61 |
59 60
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
62 |
61
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
63 |
58 62
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
64 |
1 18 34
|
issubm |
⊢ ( 𝑆 ∈ Mnd → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
65 |
17 64
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ↔ ( { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ⊆ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
66 |
12 27 63 65
|
mpbir3and |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ∈ ( SubMnd ‘ 𝑆 ) ) |
67 |
10 66
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |