| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 3 | 1 2 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 5 | 4 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 6 | 1 2 | mhmf | ⊢ ( 𝐺  ∈  ( 𝑆  MndHom  𝑇 )  →  𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 8 | 7 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝐺  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 9 |  | fndmin | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  𝐺  Fn  ( Base ‘ 𝑆 ) )  →  dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  =  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 11 |  | ssrab2 | ⊢ { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 16 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  𝑆  ∈  Mnd ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  𝑆  ∈  Mnd ) | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 19 | 1 18 | mndidcl | ⊢ ( 𝑆  ∈  Mnd  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 22 | 18 21 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 24 | 18 21 | mhm0 | ⊢ ( 𝐺  ∈  ( 𝑆  MndHom  𝑇 )  →  ( 𝐺 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐺 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 26 | 23 25 | eqtr4d | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) | 
						
							| 27 | 15 20 26 | elrabd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( 0g ‘ 𝑆 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 30 | 28 29 | eqeq12d | ⊢ ( 𝑧  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) | 
						
							| 31 | 17 | ad2antrr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑆  ∈  Mnd ) | 
						
							| 32 |  | simplrl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 34 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 35 | 1 34 | mndcl | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 36 | 31 32 33 35 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 37 |  | simplll | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝐹  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 38 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 39 | 1 34 38 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 40 | 37 32 33 39 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 41 |  | simpllr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) ) | 
						
							| 42 | 1 34 38 | mhmlin | ⊢ ( ( 𝐺  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 43 | 41 32 33 42 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 44 |  | simplrr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 45 |  | simprr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 46 | 44 45 | oveq12d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 47 | 43 46 | eqtr4d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 48 | 40 47 | eqtr4d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | 
						
							| 49 | 30 36 48 | elrabd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 50 | 49 | expr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 51 | 50 | ralrimiva | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 54 | 52 53 | eqeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 55 | 54 | ralrab | ⊢ ( ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 56 | 51 55 | sylibr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  →  ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 57 | 56 | expr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 )  →  ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 )  →  ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 61 | 59 60 | eqeq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 62 | 61 | ralrab | ⊢ ( ∀ 𝑥  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 )  →  ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) | 
						
							| 63 | 58 62 | sylibr | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ∀ 𝑥  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) | 
						
							| 64 | 1 18 34 | issubm | ⊢ ( 𝑆  ∈  Mnd  →  ( { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ∈  ( SubMnd ‘ 𝑆 )  ↔  ( { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ⊆  ( Base ‘ 𝑆 )  ∧  ( 0g ‘ 𝑆 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ∧  ∀ 𝑥  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) ) | 
						
							| 65 | 17 64 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  ( { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ∈  ( SubMnd ‘ 𝑆 )  ↔  ( { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ⊆  ( Base ‘ 𝑆 )  ∧  ( 0g ‘ 𝑆 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ∧  ∀ 𝑥  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) } ) ) ) | 
						
							| 66 | 12 27 63 65 | mpbir3and | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  { 𝑧  ∈  ( Base ‘ 𝑆 )  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) }  ∈  ( SubMnd ‘ 𝑆 ) ) | 
						
							| 67 | 10 66 | eqeltrd | ⊢ ( ( 𝐹  ∈  ( 𝑆  MndHom  𝑇 )  ∧  𝐺  ∈  ( 𝑆  MndHom  𝑇 ) )  →  dom  ( 𝐹  ∩  𝐺 )  ∈  ( SubMnd ‘ 𝑆 ) ) |