Metamath Proof Explorer


Theorem mhmf

Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses mhmf.b 𝐵 = ( Base ‘ 𝑆 )
mhmf.c 𝐶 = ( Base ‘ 𝑇 )
Assertion mhmf ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 mhmf.b 𝐵 = ( Base ‘ 𝑆 )
2 mhmf.c 𝐶 = ( Base ‘ 𝑇 )
3 eqid ( +g𝑆 ) = ( +g𝑆 )
4 eqid ( +g𝑇 ) = ( +g𝑇 )
5 eqid ( 0g𝑆 ) = ( 0g𝑆 )
6 eqid ( 0g𝑇 ) = ( 0g𝑇 )
7 1 2 3 4 5 6 ismhm ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵𝐶 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) ) ) )
8 7 simprbi ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 : 𝐵𝐶 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) ) )
9 8 simp1d ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : 𝐵𝐶 )