Step |
Hyp |
Ref |
Expression |
1 |
|
mhmf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mhmf1o.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑆 ∈ Mnd ) |
4 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) |
5 |
3 4
|
jca |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
7 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
9 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
11 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
12 |
10
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
13 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) |
14 |
12 13
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
15 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
16 |
12 15
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
19 |
1 17 18
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
20 |
11 14 16 19
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
21 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
23 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
24 |
22 13 23
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
25 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
26 |
22 15 25
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
27 |
24 26
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
28 |
20 27
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
29 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝑅 ∈ Mnd ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mnd ) |
31 |
1 17
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
32 |
30 14 16 31
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
33 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
34 |
22 32 33
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
35 |
28 34
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
36 |
35
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
39 |
37 38
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
41 |
40
|
eqcomd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 0g ‘ 𝑆 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) ) |
43 |
1 37
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
44 |
4 43
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
45 |
44
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
46 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
47 |
21 45 46
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
48 |
42 47
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) |
49 |
10 36 48
|
3jca |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∧ ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) ) |
50 |
2 1 18 17 38 37
|
ismhm |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ∧ ( ◡ 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∧ ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
51 |
6 49 50
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) |
52 |
1 2
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
53 |
52
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
54 |
53
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
55 |
2 1
|
mhmf |
⊢ ( ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
56 |
55
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
57 |
56
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
58 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) |
59 |
54 57 58
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
60 |
51 59
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 MndHom 𝑅 ) ) ) |