| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmf1o.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mhmf1o.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | mhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝑆  ∈  Mnd ) | 
						
							| 4 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝑅  ∈  Mnd ) | 
						
							| 5 | 3 4 | jca | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  ( 𝑆  ∈  Mnd  ∧  𝑅  ∈  Mnd ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( 𝑆  ∈  Mnd  ∧  𝑅  ∈  Mnd ) ) | 
						
							| 7 |  | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  →  ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | 
						
							| 9 |  | f1of | ⊢ ( ◡ 𝐹 : 𝐶 –1-1-onto→ 𝐵  →  ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 12 | 10 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 13 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ◡ 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑦  ∈  𝐶 ) | 
						
							| 16 | 12 15 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 19 | 1 17 18 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ( ◡ 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 20 | 11 14 16 19 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | 
						
							| 23 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 24 | 22 13 23 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 25 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ∧  𝑦  ∈  𝐶 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 26 | 22 15 25 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) )  =  𝑦 ) | 
						
							| 27 | 24 26 | oveq12d | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | 
						
							| 28 | 20 27 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | 
						
							| 29 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  𝑅  ∈  Mnd ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 31 | 1 17 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( ◡ 𝐹 ‘ 𝑥 )  ∈  𝐵  ∧  ( ◡ 𝐹 ‘ 𝑦 )  ∈  𝐵 )  →  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 32 | 30 14 16 31 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 33 |  | f1ocnvfv | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ∧  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) )  ∈  𝐵 )  →  ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  →  ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 34 | 22 32 33 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  →  ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 28 34 | mpd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 38 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 39 | 37 38 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( 0g ‘ 𝑆 )  =  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 43 | 1 37 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 44 | 4 43 | syl | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 46 |  | f1ocnvfv1 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵 )  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 47 | 21 45 46 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( ◡ 𝐹 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 48 | 42 47 | eqtrd | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 49 | 10 36 48 | 3jca | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ( ◡ 𝐹 : 𝐶 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) )  ∧  ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 50 | 2 1 18 17 38 37 | ismhm | ⊢ ( ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 )  ↔  ( ( 𝑆  ∈  Mnd  ∧  𝑅  ∈  Mnd )  ∧  ( ◡ 𝐹 : 𝐶 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑦 ) )  ∧  ( ◡ 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 51 | 6 49 50 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  𝐹 : 𝐵 –1-1-onto→ 𝐶 )  →  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) ) | 
						
							| 52 | 1 2 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 54 | 53 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) )  →  𝐹  Fn  𝐵 ) | 
						
							| 55 | 2 1 | mhmf | ⊢ ( ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 )  →  ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) )  →  ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 57 | 56 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) )  →  ◡ 𝐹  Fn  𝐶 ) | 
						
							| 58 |  | dff1o4 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ↔  ( 𝐹  Fn  𝐵  ∧  ◡ 𝐹  Fn  𝐶 ) ) | 
						
							| 59 | 54 57 58 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | 
						
							| 60 | 51 59 | impbida | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ↔  ◡ 𝐹  ∈  ( 𝑆  MndHom  𝑅 ) ) ) |