Step |
Hyp |
Ref |
Expression |
1 |
|
ghmgrp.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
|
ghmgrp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
ghmgrp.y |
⊢ 𝑌 = ( Base ‘ 𝐻 ) |
4 |
|
ghmgrp.p |
⊢ + = ( +g ‘ 𝐺 ) |
5 |
|
ghmgrp.q |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
6 |
|
ghmgrp.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
7 |
|
mhmmnd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
8 |
|
mhmid.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
10 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
12 |
2 8
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝑋 ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑋 ) |
14 |
11 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑌 ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝜑 ) |
16 |
15 1
|
syl3an1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd ) |
18 |
17 12
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 0 ∈ 𝑋 ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) |
20 |
16 18 19
|
mhmlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
21 |
2 4 8
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 0 + 𝑖 ) = 𝑖 ) |
22 |
17 19 21
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 0 + 𝑖 ) = 𝑖 ) |
23 |
22
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
24 |
20 23
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
26 |
25
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) ) |
27 |
24 26 25
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) = 𝑎 ) |
28 |
|
foelrni |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
29 |
6 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
30 |
27 29
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( ( 𝐹 ‘ 0 ) ⨣ 𝑎 ) = 𝑎 ) |
31 |
16 19 18
|
mhmlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) ) |
32 |
2 4 8
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 + 0 ) = 𝑖 ) |
33 |
17 19 32
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑖 + 0 ) = 𝑖 ) |
34 |
33
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
35 |
31 34
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
36 |
25
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 0 ) ) = ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) ) |
37 |
35 36 25
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) = 𝑎 ) |
38 |
37 29
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( 𝑎 ⨣ ( 𝐹 ‘ 0 ) ) = 𝑎 ) |
39 |
3 9 5 14 30 38
|
ismgmid2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝐻 ) ) |