Metamath Proof Explorer


Theorem mhmid

Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
ghmgrp.p + = ( +g𝐺 )
ghmgrp.q = ( +g𝐻 )
ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
mhmid.0 0 = ( 0g𝐺 )
Assertion mhmid ( 𝜑 → ( 𝐹0 ) = ( 0g𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
2 ghmgrp.x 𝑋 = ( Base ‘ 𝐺 )
3 ghmgrp.y 𝑌 = ( Base ‘ 𝐻 )
4 ghmgrp.p + = ( +g𝐺 )
5 ghmgrp.q = ( +g𝐻 )
6 ghmgrp.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 mhmmnd.3 ( 𝜑𝐺 ∈ Mnd )
8 mhmid.0 0 = ( 0g𝐺 )
9 eqid ( 0g𝐻 ) = ( 0g𝐻 )
10 fof ( 𝐹 : 𝑋onto𝑌𝐹 : 𝑋𝑌 )
11 6 10 syl ( 𝜑𝐹 : 𝑋𝑌 )
12 2 8 mndidcl ( 𝐺 ∈ Mnd → 0𝑋 )
13 7 12 syl ( 𝜑0𝑋 )
14 11 13 ffvelrnd ( 𝜑 → ( 𝐹0 ) ∈ 𝑌 )
15 simplll ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝜑 )
16 15 1 syl3an1 ( ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
17 7 ad3antrrr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd )
18 17 12 syl ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 0𝑋 )
19 simplr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → 𝑖𝑋 )
20 16 18 19 mhmlem ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( ( 𝐹0 ) ( 𝐹𝑖 ) ) )
21 2 4 8 mndlid ( ( 𝐺 ∈ Mnd ∧ 𝑖𝑋 ) → ( 0 + 𝑖 ) = 𝑖 )
22 17 19 21 syl2anc ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 0 + 𝑖 ) = 𝑖 )
23 22 fveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 0 + 𝑖 ) ) = ( 𝐹𝑖 ) )
24 20 23 eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹0 ) ( 𝐹𝑖 ) ) = ( 𝐹𝑖 ) )
25 simpr ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹𝑖 ) = 𝑎 )
26 25 oveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹0 ) ( 𝐹𝑖 ) ) = ( ( 𝐹0 ) 𝑎 ) )
27 24 26 25 3eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹0 ) 𝑎 ) = 𝑎 )
28 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑎𝑌 ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
29 6 28 sylan ( ( 𝜑𝑎𝑌 ) → ∃ 𝑖𝑋 ( 𝐹𝑖 ) = 𝑎 )
30 27 29 r19.29a ( ( 𝜑𝑎𝑌 ) → ( ( 𝐹0 ) 𝑎 ) = 𝑎 )
31 16 19 18 mhmlem ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( ( 𝐹𝑖 ) ( 𝐹0 ) ) )
32 2 4 8 mndrid ( ( 𝐺 ∈ Mnd ∧ 𝑖𝑋 ) → ( 𝑖 + 0 ) = 𝑖 )
33 17 19 32 syl2anc ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝑖 + 0 ) = 𝑖 )
34 33 fveq2d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + 0 ) ) = ( 𝐹𝑖 ) )
35 31 34 eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹𝑖 ) ( 𝐹0 ) ) = ( 𝐹𝑖 ) )
36 25 oveq1d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( ( 𝐹𝑖 ) ( 𝐹0 ) ) = ( 𝑎 ( 𝐹0 ) ) )
37 35 36 25 3eqtr3d ( ( ( ( 𝜑𝑎𝑌 ) ∧ 𝑖𝑋 ) ∧ ( 𝐹𝑖 ) = 𝑎 ) → ( 𝑎 ( 𝐹0 ) ) = 𝑎 )
38 37 29 r19.29a ( ( 𝜑𝑎𝑌 ) → ( 𝑎 ( 𝐹0 ) ) = 𝑎 )
39 3 9 5 14 30 38 ismgmid2 ( 𝜑 → ( 𝐹0 ) = ( 0g𝐻 ) )