Step |
Hyp |
Ref |
Expression |
1 |
|
imassrn |
⊢ ( 𝐹 “ 𝑋 ) ⊆ ran 𝐹 |
2 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
4 |
2 3
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
6 |
5
|
frnd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝑁 ) ) |
7 |
1 6
|
sstrid |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑁 ) = ( 0g ‘ 𝑁 ) |
10 |
8 9
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
12 |
5
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
13 |
2
|
submss |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
15 |
8
|
subm0cl |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) → ( 0g ‘ 𝑀 ) ∈ 𝑋 ) |
16 |
15
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 0g ‘ 𝑀 ) ∈ 𝑋 ) |
17 |
|
fnfvima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
18 |
12 14 16 17
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑀 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
19 |
11 18
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ) |
20 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
21 |
14
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
23 |
21 22
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) |
24 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
25 |
21 24
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) |
28 |
2 26 27
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
20 23 25 28
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
12
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
31 |
26
|
submcl |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
32 |
31
|
3expb |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
33 |
32
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
34 |
|
fnfvima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
35 |
30 21 33 34
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
36 |
29 35
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
37 |
36
|
anassrs |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
38 |
37
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
40 |
39
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
41 |
40
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
42 |
12 14 41
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
44 |
38 43
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
46 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ) |
47 |
46
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
48 |
47
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
49 |
48
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
50 |
12 14 49
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
51 |
45 50
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
52 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑁 ∈ Mnd ) |
53 |
52
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → 𝑁 ∈ Mnd ) |
54 |
3 9 27
|
issubm |
⊢ ( 𝑁 ∈ Mnd → ( ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ∧ ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ↔ ( ( 𝐹 “ 𝑋 ) ⊆ ( Base ‘ 𝑁 ) ∧ ( 0g ‘ 𝑁 ) ∈ ( 𝐹 “ 𝑋 ) ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
56 |
7 19 51 55
|
mpbir3and |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝐹 “ 𝑋 ) ∈ ( SubMnd ‘ 𝑁 ) ) |