| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imassrn | ⊢ ( 𝐹  “  𝑋 )  ⊆  ran  𝐹 | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 ) | 
						
							| 4 | 2 3 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 6 | 5 | frnd | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ran  𝐹  ⊆  ( Base ‘ 𝑁 ) ) | 
						
							| 7 | 1 6 | sstrid | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑁 )  =  ( 0g ‘ 𝑁 ) | 
						
							| 10 | 8 9 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑁 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑀 ) )  =  ( 0g ‘ 𝑁 ) ) | 
						
							| 12 | 5 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  𝐹  Fn  ( Base ‘ 𝑀 ) ) | 
						
							| 13 | 2 | submss | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑀 )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 15 | 8 | subm0cl | ⊢ ( 𝑋  ∈  ( SubMnd ‘ 𝑀 )  →  ( 0g ‘ 𝑀 )  ∈  𝑋 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 0g ‘ 𝑀 )  ∈  𝑋 ) | 
						
							| 17 |  | fnfvima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝑋 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑀 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 18 | 12 14 16 17 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑀 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 19 | 11 18 | eqeltrrd | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 0g ‘ 𝑁 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) | 
						
							| 21 |  | eqidd | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( +g ‘ 𝑁 )  =  ( +g ‘ 𝑁 ) ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 24 | 23 | submcl | ⊢ ( ( 𝑋  ∈  ( SubMnd ‘ 𝑀 )  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 ) | 
						
							| 25 | 24 | 3adant1l | ⊢ ( ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 ) | 
						
							| 26 | 20 14 21 22 25 | mhmimalem | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 27 |  | mhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  →  𝑁  ∈  Mnd ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  𝑁  ∈  Mnd ) | 
						
							| 29 |  | eqid | ⊢ ( +g ‘ 𝑁 )  =  ( +g ‘ 𝑁 ) | 
						
							| 30 | 3 9 29 | issubm | ⊢ ( 𝑁  ∈  Mnd  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubMnd ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 )  ∧  ( 0g ‘ 𝑁 )  ∈  ( 𝐹  “  𝑋 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubMnd ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ⊆  ( Base ‘ 𝑁 )  ∧  ( 0g ‘ 𝑁 )  ∈  ( 𝐹  “  𝑋 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) ) | 
						
							| 32 | 7 19 26 31 | mpbir3and | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑋  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ∈  ( SubMnd ‘ 𝑁 ) ) |