| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmimalem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) | 
						
							| 2 |  | mhmimalem.s | ⊢ ( 𝜑  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 3 |  | mhmimalem.a | ⊢ ( 𝜑  →   ⊕   =  ( +g ‘ 𝑀 ) ) | 
						
							| 4 |  | mhmimalem.p | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑁 ) ) | 
						
							| 5 |  | mhmimalem.c | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧  ⊕  𝑥 )  ∈  𝑋 ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 9 | 7 8 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑧  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 11 | 7 10 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝑥  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑁 )  =  ( +g ‘ 𝑁 ) | 
						
							| 15 | 12 13 14 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ∧  𝑧  ∈  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 16 | 6 9 11 15 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 | 3 | oveqd | ⊢ ( 𝜑  →  ( 𝑧  ⊕  𝑥 )  =  ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 19 | 4 | oveqd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 20 | 18 19 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 22 | 16 21 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 ) | 
						
							| 24 | 12 23 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 26 | 25 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( Base ‘ 𝑀 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  𝐹  Fn  ( Base ‘ 𝑀 ) ) | 
						
							| 28 | 5 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝑧  ⊕  𝑥 )  ∈  𝑋 ) | 
						
							| 29 |  | fnfvima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 )  ∧  ( 𝑧  ⊕  𝑥 )  ∈  𝑋 )  →  ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 30 | 27 7 28 29 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧  ⊕  𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 31 | 22 30 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 32 | 31 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  =  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 36 | 35 | ralima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 37 | 26 2 36 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐹 ‘ 𝑧 )  +  ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 39 | 33 38 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥  +  𝑦 )  =  ( ( 𝐹 ‘ 𝑧 )  +  𝑦 ) ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑥  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 43 | 42 | ralbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 44 | 43 | ralima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑀 )  ∧  𝑋  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 45 | 26 2 44 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥  +  𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( ( 𝐹 ‘ 𝑧 )  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) | 
						
							| 46 | 40 45 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥  +  𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) |