Step |
Hyp |
Ref |
Expression |
1 |
|
mhmimasplusg.w |
⊢ 𝑊 = ( 𝐹 “s 𝑉 ) |
2 |
|
mhmimasplusg.b |
⊢ 𝐵 = ( Base ‘ 𝑉 ) |
3 |
|
mhmimasplusg.c |
⊢ 𝐶 = ( Base ‘ 𝑊 ) |
4 |
|
mhmimasplusg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
mhmimasplusg.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
mhmimasplusg.1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ 𝐶 ) |
7 |
|
mhmimasplusg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) ) |
8 |
|
mhmimasplusg.2 |
⊢ + = ( +g ‘ 𝑉 ) |
9 |
|
mhmimasplusg.3 |
⊢ ⨣ = ( +g ‘ 𝑊 ) |
10 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) |
12 |
10 11
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑝 ) ⨣ ( 𝐹 ‘ 𝑞 ) ) ) |
13 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) ) |
15 |
|
simpl2l |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → 𝑎 ∈ 𝐵 ) |
16 |
|
simpl2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → 𝑏 ∈ 𝐵 ) |
17 |
2 8 9
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
19 |
|
simpl3l |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → 𝑝 ∈ 𝐵 ) |
20 |
|
simpl3r |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → 𝑞 ∈ 𝐵 ) |
21 |
2 8 9
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) = ( ( 𝐹 ‘ 𝑝 ) ⨣ ( 𝐹 ‘ 𝑞 ) ) ) |
22 |
14 19 20 21
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) = ( ( 𝐹 ‘ 𝑝 ) ⨣ ( 𝐹 ‘ 𝑞 ) ) ) |
23 |
12 18 22
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) |
24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
25 |
1
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( 𝐹 “s 𝑉 ) ) |
26 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑉 ) ) |
27 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑉 MndHom 𝑊 ) → 𝑉 ∈ Mnd ) |
28 |
7 27
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
29 |
6 24 25 26 28 8 9
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) ) |
30 |
4 5 29
|
mpd3an23 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ⨣ ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑌 ) ) ) |