| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndmgm | ⊢ ( 𝑅  ∈  Mnd  →  𝑅  ∈  Mgm ) | 
						
							| 2 |  | mndmgm | ⊢ ( 𝑆  ∈  Mnd  →  𝑆  ∈  Mgm ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑅  ∈  Mgm  ∧  𝑆  ∈  Mgm ) ) | 
						
							| 4 |  | 3simpa | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) )  →  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 5 | 3 4 | anim12i | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑅  ∈  Mgm  ∧  𝑆  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 12 | 6 7 8 9 10 11 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ↔  ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 13 | 6 7 8 9 | ismgmhm | ⊢ ( 𝐹  ∈  ( 𝑅  MgmHom  𝑆 )  ↔  ( ( 𝑅  ∈  Mgm  ∧  𝑆  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 14 | 5 12 13 | 3imtr4i | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝐹  ∈  ( 𝑅  MgmHom  𝑆 ) ) |