Step |
Hyp |
Ref |
Expression |
1 |
|
ghmgrp.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
|
mhmlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
3 |
|
mhmlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
4 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) |
6 |
5
|
3anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
7 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
11 |
6 10
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |
13 |
12
|
3anbi3d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) |
18 |
15 17
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
19 |
13 18
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
20 |
11 19 1
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
21 |
2 3 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) ) |
22 |
4 2 3 21
|
mp3and |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ⨣ ( 𝐹 ‘ 𝐵 ) ) ) |