Metamath Proof Explorer


Theorem mhmlem

Description: Lemma for mhmmnd and ghmgrp . (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
mhmlem.a ( 𝜑𝐴𝑋 )
mhmlem.b ( 𝜑𝐵𝑋 )
Assertion mhmlem ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ghmgrp.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
2 mhmlem.a ( 𝜑𝐴𝑋 )
3 mhmlem.b ( 𝜑𝐵𝑋 )
4 id ( 𝜑𝜑 )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑋𝐴𝑋 ) )
6 5 3anbi2d ( 𝑥 = 𝐴 → ( ( 𝜑𝑥𝑋𝑦𝑋 ) ↔ ( 𝜑𝐴𝑋𝑦𝑋 ) ) )
7 fvoveq1 ( 𝑥 = 𝐴 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) )
8 fveq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
9 8 oveq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) )
10 7 9 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) ) )
11 6 10 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) ↔ ( ( 𝜑𝐴𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) ) ) )
12 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑋𝐵𝑋 ) )
13 12 3anbi3d ( 𝑦 = 𝐵 → ( ( 𝜑𝐴𝑋𝑦𝑋 ) ↔ ( 𝜑𝐴𝑋𝐵𝑋 ) ) )
14 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 + 𝑦 ) = ( 𝐴 + 𝐵 ) )
15 14 fveq2d ( 𝑦 = 𝐵 → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) )
16 fveq2 ( 𝑦 = 𝐵 → ( 𝐹𝑦 ) = ( 𝐹𝐵 ) )
17 16 oveq2d ( 𝑦 = 𝐵 → ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) )
18 15 17 eqeq12d ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) ) )
19 13 18 imbi12d ( 𝑦 = 𝐵 → ( ( ( 𝜑𝐴𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝑦 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝑦 ) ) ) ↔ ( ( 𝜑𝐴𝑋𝐵𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) ) ) )
20 11 19 1 vtocl2g ( ( 𝐴𝑋𝐵𝑋 ) → ( ( 𝜑𝐴𝑋𝐵𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) ) )
21 2 3 20 syl2anc ( 𝜑 → ( ( 𝜑𝐴𝑋𝐵𝑋 ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) ) )
22 4 2 3 21 mp3and ( 𝜑 → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐹𝐴 ) ( 𝐹𝐵 ) ) )