Step |
Hyp |
Ref |
Expression |
1 |
|
ghmgrp.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
|
ghmgrp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
ghmgrp.y |
⊢ 𝑌 = ( Base ‘ 𝐻 ) |
4 |
|
ghmgrp.p |
⊢ + = ( +g ‘ 𝐺 ) |
5 |
|
ghmgrp.q |
⊢ ⨣ = ( +g ‘ 𝐻 ) |
6 |
|
ghmgrp.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
7 |
|
mhmmnd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
8 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
9 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
10 |
8 9
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑎 ⨣ 𝑏 ) ) |
11 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝜑 ) |
12 |
11 1
|
syl3an1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝑖 ∈ 𝑋 ) |
14 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝑗 ∈ 𝑋 ) |
15 |
12 13 14
|
mhmlem |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
16 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
18 |
17
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
19 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → 𝐺 ∈ Mnd ) |
20 |
2 4
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
21 |
19 13 14 20
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
22 |
18 21
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ∈ 𝑌 ) |
23 |
15 22
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ∈ 𝑌 ) |
24 |
10 23
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
25 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) |
26 |
|
foelrni |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
27 |
6 25 26
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
29 |
24 28
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
30 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → 𝑎 ∈ 𝑌 ) |
31 |
|
foelrni |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
32 |
6 30 31
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
33 |
29 32
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ) |
34 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝜑 ) |
35 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑎 ∈ 𝑌 ) |
36 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) |
37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → 𝑐 ∈ 𝑌 ) |
38 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝐺 ∈ Mnd ) |
39 |
38
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝐺 ∈ Mnd ) |
40 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑖 ∈ 𝑋 ) |
41 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑗 ∈ 𝑋 ) |
42 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝑘 ∈ 𝑋 ) |
43 |
2 4
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) |
44 |
39 40 41 42 43
|
syl13anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝑖 + 𝑗 ) + 𝑘 ) = ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) ) |
46 |
|
simp-7l |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → 𝜑 ) |
47 |
46 1
|
syl3an1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
39 40 41 20
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝑖 + 𝑗 ) ∈ 𝑋 ) |
49 |
47 48 42
|
mhmlem |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( ( 𝑖 + 𝑗 ) + 𝑘 ) ) = ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
50 |
2 4
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 ) |
51 |
39 41 42 50
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝑗 + 𝑘 ) ∈ 𝑋 ) |
52 |
47 40 51
|
mhmlem |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) ) |
53 |
45 49 52
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) ) |
54 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝜑 ) |
55 |
54 1
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
56 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
57 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) |
58 |
55 56 57
|
mhmlem |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
59 |
46 40 41 58
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ ( 𝑖 + 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
61 |
47 41 42
|
mhmlem |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) = ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) |
62 |
61
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 𝑗 + 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) ) |
63 |
53 60 62
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) ) |
64 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
65 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
66 |
64 65
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑎 ⨣ 𝑏 ) ) |
67 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
68 |
66 67
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ 𝑗 ) ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) ) |
69 |
65 67
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑏 ⨣ 𝑐 ) ) |
70 |
64 69
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( ( 𝐹 ‘ 𝑗 ) ⨣ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
71 |
63 68 70
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) ∧ 𝑘 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑐 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
72 |
|
foelrni |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑐 ∈ 𝑌 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
73 |
6 72
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑌 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
74 |
73
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
75 |
74
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) = 𝑐 ) |
76 |
71 75
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑗 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) = 𝑏 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
77 |
27
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ∃ 𝑗 ∈ 𝑋 ( 𝐹 ‘ 𝑗 ) = 𝑏 ) |
79 |
76 78
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
80 |
32
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
81 |
79 80
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ∧ 𝑐 ∈ 𝑌 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
82 |
34 35 36 37 81
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) ∧ 𝑐 ∈ 𝑌 ) → ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
83 |
82
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) |
84 |
33 83
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑌 ∧ 𝑏 ∈ 𝑌 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ) |
85 |
84
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ∀ 𝑏 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ) |
86 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
87 |
2 86
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
88 |
7 87
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
89 |
17 88
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ∈ 𝑌 ) |
90 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝜑 ) |
91 |
90 1
|
syl3an1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
92 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝐺 ∈ Mnd ) |
93 |
92 87
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
94 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → 𝑖 ∈ 𝑋 ) |
95 |
91 93 94
|
mhmlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g ‘ 𝐺 ) + 𝑖 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) ) |
96 |
2 4 86
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑖 ) = 𝑖 ) |
97 |
92 94 96
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 0g ‘ 𝐺 ) + 𝑖 ) = 𝑖 ) |
98 |
97
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( ( 0g ‘ 𝐺 ) + 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
99 |
95 98
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐹 ‘ 𝑖 ) ) |
100 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
101 |
100
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) ) |
102 |
99 101 100
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ) |
103 |
91 94 93
|
mhmlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g ‘ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) |
104 |
2 4 86
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 + ( 0g ‘ 𝐺 ) ) = 𝑖 ) |
105 |
92 94 104
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑖 + ( 0g ‘ 𝐺 ) ) = 𝑖 ) |
106 |
105
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝐹 ‘ ( 𝑖 + ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
107 |
103 106
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
108 |
100
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( 𝐹 ‘ 𝑖 ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) ) |
109 |
107 108 100
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) |
110 |
102 109
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) ∧ 𝑖 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑖 ) = 𝑎 ) → ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
111 |
6 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ∃ 𝑖 ∈ 𝑋 ( 𝐹 ‘ 𝑖 ) = 𝑎 ) |
112 |
110 111
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
113 |
112
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) |
114 |
|
oveq1 |
⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( 𝑑 ⨣ 𝑎 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) ) |
115 |
114
|
eqeq1d |
⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ↔ ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ) ) |
116 |
115
|
ovanraleqv |
⊢ ( 𝑑 = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) → ( ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) ) |
117 |
116
|
rspcev |
⊢ ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ∈ 𝑌 ∧ ∀ 𝑎 ∈ 𝑌 ( ( ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) = 𝑎 ) ) → ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) |
118 |
89 113 117
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) |
119 |
3 5
|
ismnd |
⊢ ( 𝐻 ∈ Mnd ↔ ( ∀ 𝑎 ∈ 𝑌 ∀ 𝑏 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ∈ 𝑌 ∧ ∀ 𝑐 ∈ 𝑌 ( ( 𝑎 ⨣ 𝑏 ) ⨣ 𝑐 ) = ( 𝑎 ⨣ ( 𝑏 ⨣ 𝑐 ) ) ) ∧ ∃ 𝑑 ∈ 𝑌 ∀ 𝑎 ∈ 𝑌 ( ( 𝑑 ⨣ 𝑎 ) = 𝑎 ∧ ( 𝑎 ⨣ 𝑑 ) = 𝑎 ) ) ) |
120 |
85 118 119
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |