| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmmulg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mhmmulg.s | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mhmmulg.t | ⊢  ×   =  ( .g ‘ 𝐻 ) | 
						
							| 4 |  | fvoveq1 | ⊢ ( 𝑛  =  0  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝐹 ‘ ( 0  ·  𝑋 ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 0  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑛  =  0  →  ( ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ ( 0  ·  𝑋 ) )  =  ( 0  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑛  =  0  →  ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) ) )  ↔  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 0  ·  𝑋 ) )  =  ( 0  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 8 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) ) )  ↔  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 12 |  | fvoveq1 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) ) )  ↔  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 16 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ×  ( 𝐹 ‘ 𝑋 ) ) )  ↔  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 22 | 20 21 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 24 | 1 20 2 | mulg0 | ⊢ ( 𝑋  ∈  𝐵  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 0  ·  𝑋 ) )  =  ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 28 | 1 27 | mhmf | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 30 | 27 21 3 | mulg0 | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 )  →  ( 0  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 0  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 32 | 23 26 31 | 3eqtr4d | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 0  ·  𝑋 ) )  =  ( 0  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 34 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐺  ∈  Mnd ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝐺  ∈  Mnd ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 37 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 38 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 39 | 1 2 38 | mulgnn0p1 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑚  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑚  +  1 )  ·  𝑋 )  =  ( ( 𝑚  ·  𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 40 | 35 36 37 39 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑚  +  1 )  ·  𝑋 )  =  ( ( 𝑚  ·  𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( 𝐹 ‘ ( ( 𝑚  ·  𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 42 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝐹  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 43 | 34 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑋  ∈  𝐵 )  →  𝐺  ∈  Mnd ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑋  ∈  𝐵 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 46 | 1 2 43 44 45 | mulgnn0cld | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑚  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 47 | 46 | an32s | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 48 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 49 | 1 38 48 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  ( 𝑚  ·  𝑋 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( 𝑚  ·  𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 50 | 42 47 37 49 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ ( ( 𝑚  ·  𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 51 | 41 50 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 52 |  | mhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐻  ∈  Mnd ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  𝐻  ∈  Mnd ) | 
						
							| 54 | 29 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 55 | 27 3 48 | mulgnn0p1 | ⊢ ( ( 𝐻  ∈  Mnd  ∧  𝑚  ∈  ℕ0  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) )  →  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 56 | 53 36 54 55 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 57 | 51 56 | eqeq12d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) )  ↔  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 58 | 33 57 | imbitrrid | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 59 | 58 | expcom | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 60 | 59 | a2d | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑚  ·  𝑋 ) )  =  ( 𝑚  ×  ( 𝐹 ‘ 𝑋 ) ) )  →  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( 𝑚  +  1 )  ·  𝑋 ) )  =  ( ( 𝑚  +  1 )  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 61 | 7 11 15 19 32 60 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 62 | 61 | 3impib | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 63 | 62 | 3com12 | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) |