Step |
Hyp |
Ref |
Expression |
1 |
|
mhmmulg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mhmmulg.s |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mhmmulg.t |
⊢ × = ( .g ‘ 𝐻 ) |
4 |
|
fvoveq1 |
⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 0 · 𝑋 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑛 = 0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
12 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
16 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
22 |
20 21
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
24 |
1 20 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
28 |
1 27
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
30 |
27 21 3
|
mulg0 |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
32 |
23 26 31
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) |
33 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
34 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐺 ∈ Mnd ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
36 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
37 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
38 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
39 |
1 2 38
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
40 |
35 36 37 39
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
42 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
43 |
34
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
44 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑚 ∈ ℕ0 ) |
45 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
46 |
1 2
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
48 |
47
|
an32s |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
49 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
50 |
1 38 49
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑚 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
51 |
42 48 37 50
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
52 |
41 51
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
53 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐻 ∈ Mnd ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐻 ∈ Mnd ) |
55 |
29
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
56 |
27 3 49
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
57 |
54 36 55 56
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
58 |
52 57
|
eqeq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
59 |
33 58
|
syl5ibr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
60 |
59
|
expcom |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
61 |
60
|
a2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
62 |
7 11 15 19 32 61
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
63 |
62
|
3impib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
64 |
63
|
3com12 |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |