| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmpropd.a | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 2 |  | mhmpropd.b | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | mhmpropd.c | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 4 |  | mhmpropd.d | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | mhmpropd.e | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 6 |  | mhmpropd.f | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 7 | 5 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) | 
						
							| 8 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) | 
						
							| 9 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  𝑦  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 11 | 9 10 | anim12dan | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ∧  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 ) ) | 
						
							| 12 | 6 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 19 | 15 18 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ↔  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 20 | 12 19 | sylib | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑓 ‘ 𝑥 )  →  ( ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 )  ↔  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 26 | 24 25 | eqeq12d | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  →  ( ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 )  ↔  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 23 26 | rspc2va | ⊢ ( ( ( ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ∧  ( 𝑓 ‘ 𝑦 )  ∈  𝐶 )  ∧  ∀ 𝑤  ∈  𝐶 ∀ 𝑧  ∈  𝐶 ( 𝑤 ( +g ‘ 𝐾 ) 𝑧 )  =  ( 𝑤 ( +g ‘ 𝑀 ) 𝑧 ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 28 | 11 20 27 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 30 | 8 29 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 31 | 30 | 2ralbidva | ⊢ ( ( 𝜑  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 32 | 31 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 33 |  | raleq | ⊢ ( 𝐵  =  ( Base ‘ 𝐽 )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 34 | 33 | raleqbi1dv | ⊢ ( 𝐵  =  ( Base ‘ 𝐽 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 1 34 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 37 |  | raleq | ⊢ ( 𝐵  =  ( Base ‘ 𝐿 )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 38 | 37 | raleqbi1dv | ⊢ ( 𝐵  =  ( Base ‘ 𝐿 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 3 38 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 32 36 40 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 43 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 44 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 45 | 42 43 44 | grpidpropd | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( 0g ‘ 𝐽 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) ) ) | 
						
							| 47 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  𝐶  =  ( Base ‘ 𝑀 ) ) | 
						
							| 49 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 50 | 47 48 49 | grpidpropd | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 51 | 46 50 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 )  ↔  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 52 | 41 51 | anbi12d | ⊢ ( ( 𝜑  ∧  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  𝑓 : 𝐵 ⟶ 𝐶 ) )  →  ( ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) )  ↔  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 53 | 52 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  ∧  𝑓 : 𝐵 ⟶ 𝐶 )  →  ( ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) )  ↔  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 54 | 53 | pm5.32da | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) )  ↔  ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 55 | 1 2 | feq23d | ⊢ ( 𝜑  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 57 | 56 | anbi1d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) ) ) ) | 
						
							| 58 | 3 4 | feq23d | ⊢ ( 𝜑  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( 𝑓 : 𝐵 ⟶ 𝐶  ↔  𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 ) ) ) | 
						
							| 60 | 59 | anbi1d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( ( 𝑓 : 𝐵 ⟶ 𝐶  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 61 | 54 57 60 | 3bitr3d | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 62 |  | 3anass | ⊢ ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) )  ↔  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 63 |  | 3anass | ⊢ ( ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ( ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 64 | 61 62 63 | 3bitr4g | ⊢ ( ( 𝜑  ∧  ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd ) )  →  ( ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) )  ↔  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 65 | 64 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) )  ↔  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 66 | 1 3 5 | mndpropd | ⊢ ( 𝜑  →  ( 𝐽  ∈  Mnd  ↔  𝐿  ∈  Mnd ) ) | 
						
							| 67 | 2 4 6 | mndpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Mnd  ↔  𝑀  ∈  Mnd ) ) | 
						
							| 68 | 66 67 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ↔  ( 𝐿  ∈  Mnd  ∧  𝑀  ∈  Mnd ) ) ) | 
						
							| 69 | 68 | anbi1d | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) )  ↔  ( ( 𝐿  ∈  Mnd  ∧  𝑀  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 70 | 65 69 | bitrd | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) )  ↔  ( ( 𝐿  ∈  Mnd  ∧  𝑀  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) ) | 
						
							| 71 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 72 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 73 |  | eqid | ⊢ ( +g ‘ 𝐽 )  =  ( +g ‘ 𝐽 ) | 
						
							| 74 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 75 |  | eqid | ⊢ ( 0g ‘ 𝐽 )  =  ( 0g ‘ 𝐽 ) | 
						
							| 76 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 77 | 71 72 73 74 75 76 | ismhm | ⊢ ( 𝑓  ∈  ( 𝐽  MndHom  𝐾 )  ↔  ( ( 𝐽  ∈  Mnd  ∧  𝐾  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐽 ) ⟶ ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐽 ) ∀ 𝑦  ∈  ( Base ‘ 𝐽 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝐾 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐽 ) )  =  ( 0g ‘ 𝐾 ) ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 79 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 80 |  | eqid | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 ) | 
						
							| 81 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 82 |  | eqid | ⊢ ( 0g ‘ 𝐿 )  =  ( 0g ‘ 𝐿 ) | 
						
							| 83 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 84 | 78 79 80 81 82 83 | ismhm | ⊢ ( 𝑓  ∈  ( 𝐿  MndHom  𝑀 )  ↔  ( ( 𝐿  ∈  Mnd  ∧  𝑀  ∈  Mnd )  ∧  ( 𝑓 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐿 ) ∀ 𝑦  ∈  ( Base ‘ 𝐿 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 0g ‘ 𝐿 ) )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 85 | 70 77 84 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  MndHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  MndHom  𝑀 ) ) ) | 
						
							| 86 | 85 | eqrdv | ⊢ ( 𝜑  →  ( 𝐽  MndHom  𝐾 )  =  ( 𝐿  MndHom  𝑀 ) ) |