Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
mhphf.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
3 |
|
mhphf.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
mhphf.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
mhphf.m |
⊢ · = ( .r ‘ 𝑆 ) |
6 |
|
mhphf.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
7 |
|
mhphf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
mhphf.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
mhphf.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
mhphf.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) |
11 |
|
mhphf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
|
mhphf.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
13 |
|
mhphf.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐼 ∈ 𝑉 ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐿 ∈ 𝑅 ) |
16 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
17 |
13 16
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
18 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐴 Fn 𝐼 ) |
20 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
21 |
14 15 19 20
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) = ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) |
22 |
21
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) ) |
23 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
24 |
23
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
25 |
8 24
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
27 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
28 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
29 |
28
|
psrbagf |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
30 |
27 29
|
syl |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
32 |
31
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
33 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
34 |
9 33
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
35 |
34 10
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
37 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
38 |
37
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) |
39 |
23 4
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
40 |
23 5
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
41 |
39 6 40
|
mulgnn0di |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ CMnd ∧ ( ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
42 |
26 32 36 38 41
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
43 |
22 42
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
44 |
43
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
46 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
47 |
23 46
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
48 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑆 ∈ CRing ) |
49 |
48 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
50 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
51 |
23
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
52 |
50 51
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
54 |
39 6 53 32 36
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ∈ 𝐾 ) |
55 |
39 6 53 32 38
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐾 ) |
56 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) |
57 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
58 |
7
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ∈ V ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ∈ V ) |
60 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 1r ‘ 𝑆 ) ∈ V ) |
61 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) |
62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) |
63 |
28
|
psrbagfsupp |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑏 finSupp 0 ) |
64 |
27 63
|
syl |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 finSupp 0 ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 finSupp 0 ) |
66 |
31
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑏 supp 0 ) = ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) supp 0 ) ) |
68 |
67
|
eqimsscd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
69 |
39 47 6
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
71 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 0 ∈ ℤ ) |
72 |
68 70 32 36 71
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑏 supp 0 ) ) |
73 |
59 60 62 65 72
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) finSupp ( 1r ‘ 𝑆 ) ) |
74 |
7
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) |
76 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) |
77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
78 |
68 70 32 38 71
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑏 supp 0 ) ) |
79 |
75 60 77 65 78
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
80 |
39 47 40 49 14 54 55 56 57 73 79
|
gsummptfsadd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
81 |
|
eqid |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } = { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
82 |
28 81 39 6 7 52 35 11
|
mhphflem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) = ( 𝑁 ↑ 𝐿 ) ) |
83 |
82
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
84 |
45 80 83
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑏 ) · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
86 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
87 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
88 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
89 |
3
|
ovexi |
⊢ 𝑈 ∈ V |
90 |
89
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
91 |
2 86 88 7 90 11 12
|
mhpmpl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
92 |
86 87 88 28 91
|
mplelf |
⊢ ( 𝜑 → 𝑋 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
93 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
94 |
93 33
|
eqsstrrd |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
95 |
9 94
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
96 |
92 95
|
fssd |
⊢ ( 𝜑 → 𝑋 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
97 |
96
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑋 ‘ 𝑏 ) ∈ 𝐾 ) |
98 |
27 97
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑋 ‘ 𝑏 ) ∈ 𝐾 ) |
99 |
39 6 52 11 35
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
101 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
102 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑆 ∈ CRing ) |
103 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
105 |
28 4 23 6 101 102 103 104
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
106 |
27 105
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
107 |
4 5 48 98 100 106
|
crng12d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
108 |
85 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
109 |
108
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
111 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
112 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
113 |
112
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
114 |
113
|
rabex |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∈ V |
115 |
114
|
a1i |
⊢ ( 𝜑 → { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∈ V ) |
116 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑆 ∈ Ring ) |
117 |
4 5 116 97 105
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
118 |
27 117
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
119 |
|
ssrab2 |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
120 |
|
mptss |
⊢ ( { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ⊆ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
121 |
119 120
|
mp1i |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ⊆ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
122 |
28 86 3 88 4 23 6 5 7 8 9 91 13
|
evlsvvvallem2 |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
123 |
121 122
|
fsuppss |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
124 |
4 111 5 50 115 99 118 123
|
gsummulc2 |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
125 |
110 124
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
126 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
127 |
126
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
128 |
4 5
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
129 |
50 128
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
130 |
129
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
131 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝐾 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
132 |
35 131
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
133 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
134 |
130 132 17 7 7 133
|
off |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
135 |
127 7 134
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
136 |
1 2 3 28 81 4 23 6 5 7 8 9 11 12 135
|
evlsmhpvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
137 |
1 2 3 28 81 4 23 6 5 7 8 9 11 12 13
|
evlsmhpvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
138 |
137
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
139 |
125 136 138
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |