Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf4.q |
⊢ 𝑄 = ( 𝐼 eval 𝑆 ) |
2 |
|
mhphf4.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑆 ) |
3 |
|
mhphf4.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
4 |
|
mhphf4.f |
⊢ 𝐹 = ( 𝑆 freeLMod 𝐼 ) |
5 |
|
mhphf4.m |
⊢ 𝑀 = ( Base ‘ 𝐹 ) |
6 |
|
mhphf4.b |
⊢ ∙ = ( ·𝑠 ‘ 𝐹 ) |
7 |
|
mhphf4.x |
⊢ · = ( .r ‘ 𝑆 ) |
8 |
|
mhphf4.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
9 |
|
mhphf4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
mhphf4.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
11 |
|
mhphf4.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
12 |
|
mhphf4.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
13 |
|
mhphf4.p |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
14 |
|
mhphf4.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑀 ) |
15 |
1 3
|
evlval |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐾 ) |
16 |
|
eqid |
⊢ ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) = ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) |
17 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐾 ) = ( 𝑆 ↾s 𝐾 ) |
18 |
10
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
19 |
3
|
subrgid |
⊢ ( 𝑆 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
21 |
3
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
22 |
10 21
|
syl |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
23 |
22
|
eqcomd |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐾 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mHomP 𝑆 ) = ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) ) |
25 |
2 24
|
eqtrid |
⊢ ( 𝜑 → 𝐻 = ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) ‘ 𝑁 ) ) |
27 |
13 26
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐼 mHomP ( 𝑆 ↾s 𝐾 ) ) ‘ 𝑁 ) ) |
28 |
15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14
|
mhphf3 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |