Metamath Proof Explorer


Theorem mhphf4

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf4.q 𝑄 = ( 𝐼 eval 𝑆 )
mhphf4.h 𝐻 = ( 𝐼 mHomP 𝑆 )
mhphf4.k 𝐾 = ( Base ‘ 𝑆 )
mhphf4.f 𝐹 = ( 𝑆 freeLMod 𝐼 )
mhphf4.m 𝑀 = ( Base ‘ 𝐹 )
mhphf4.b = ( ·𝑠𝐹 )
mhphf4.x · = ( .r𝑆 )
mhphf4.e = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
mhphf4.i ( 𝜑𝐼𝑉 )
mhphf4.s ( 𝜑𝑆 ∈ CRing )
mhphf4.l ( 𝜑𝐿𝐾 )
mhphf4.n ( 𝜑𝑁 ∈ ℕ0 )
mhphf4.p ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
mhphf4.a ( 𝜑𝐴𝑀 )
Assertion mhphf4 ( 𝜑 → ( ( 𝑄𝑋 ) ‘ ( 𝐿 𝐴 ) ) = ( ( 𝑁 𝐿 ) · ( ( 𝑄𝑋 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 mhphf4.q 𝑄 = ( 𝐼 eval 𝑆 )
2 mhphf4.h 𝐻 = ( 𝐼 mHomP 𝑆 )
3 mhphf4.k 𝐾 = ( Base ‘ 𝑆 )
4 mhphf4.f 𝐹 = ( 𝑆 freeLMod 𝐼 )
5 mhphf4.m 𝑀 = ( Base ‘ 𝐹 )
6 mhphf4.b = ( ·𝑠𝐹 )
7 mhphf4.x · = ( .r𝑆 )
8 mhphf4.e = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
9 mhphf4.i ( 𝜑𝐼𝑉 )
10 mhphf4.s ( 𝜑𝑆 ∈ CRing )
11 mhphf4.l ( 𝜑𝐿𝐾 )
12 mhphf4.n ( 𝜑𝑁 ∈ ℕ0 )
13 mhphf4.p ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
14 mhphf4.a ( 𝜑𝐴𝑀 )
15 1 3 evlval 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐾 )
16 eqid ( 𝐼 mHomP ( 𝑆s 𝐾 ) ) = ( 𝐼 mHomP ( 𝑆s 𝐾 ) )
17 eqid ( 𝑆s 𝐾 ) = ( 𝑆s 𝐾 )
18 10 crngringd ( 𝜑𝑆 ∈ Ring )
19 3 subrgid ( 𝑆 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑆 ) )
20 18 19 syl ( 𝜑𝐾 ∈ ( SubRing ‘ 𝑆 ) )
21 3 ressid ( 𝑆 ∈ CRing → ( 𝑆s 𝐾 ) = 𝑆 )
22 10 21 syl ( 𝜑 → ( 𝑆s 𝐾 ) = 𝑆 )
23 22 eqcomd ( 𝜑𝑆 = ( 𝑆s 𝐾 ) )
24 23 oveq2d ( 𝜑 → ( 𝐼 mHomP 𝑆 ) = ( 𝐼 mHomP ( 𝑆s 𝐾 ) ) )
25 2 24 eqtrid ( 𝜑𝐻 = ( 𝐼 mHomP ( 𝑆s 𝐾 ) ) )
26 25 fveq1d ( 𝜑 → ( 𝐻𝑁 ) = ( ( 𝐼 mHomP ( 𝑆s 𝐾 ) ) ‘ 𝑁 ) )
27 13 26 eleqtrd ( 𝜑𝑋 ∈ ( ( 𝐼 mHomP ( 𝑆s 𝐾 ) ) ‘ 𝑁 ) )
28 15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14 mhphf3 ( 𝜑 → ( ( 𝑄𝑋 ) ‘ ( 𝐿 𝐴 ) ) = ( ( 𝑁 𝐿 ) · ( ( 𝑄𝑋 ) ‘ 𝐴 ) ) )