| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhplss.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
| 2 |
|
mhplss.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 3 |
|
mhplss.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
mhplss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
mhplss.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 7 |
1 2 3 6 5
|
mhpsubg |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 8 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑅 ∈ Ring ) |
| 11 |
2 3 4
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 13 |
12
|
eqimsscd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⊆ ( Base ‘ 𝑅 ) ) |
| 14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 17 |
1 2 8 9 10 15 16
|
mhpvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 18 |
17
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 19 |
2 3 4
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 20 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 23 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
| 24 |
20 21 22 8 23
|
islss4 |
⊢ ( 𝑃 ∈ LMod → ( ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) ) ) |
| 25 |
19 24
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻 ‘ 𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻 ‘ 𝑁 ) ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( 𝐻 ‘ 𝑁 ) ) ) ) |
| 26 |
7 18 25
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ) |