Metamath Proof Explorer


Theorem mhplss

Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhplss.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhplss.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhplss.i ( 𝜑𝐼𝑉 )
mhplss.r ( 𝜑𝑅 ∈ Ring )
mhplss.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion mhplss ( 𝜑 → ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 mhplss.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhplss.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhplss.i ( 𝜑𝐼𝑉 )
4 mhplss.r ( 𝜑𝑅 ∈ Ring )
5 mhplss.n ( 𝜑𝑁 ∈ ℕ0 )
6 4 ringgrpd ( 𝜑𝑅 ∈ Grp )
7 1 2 3 6 5 mhpsubg ( 𝜑 → ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) )
8 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 4 adantr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑅 ∈ Ring )
11 5 adantr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑁 ∈ ℕ0 )
12 2 3 4 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
13 12 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
14 13 eqimsscd ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⊆ ( Base ‘ 𝑅 ) )
15 14 sselda ( ( 𝜑𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) )
16 15 adantrr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) )
17 simprr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → 𝑏 ∈ ( 𝐻𝑁 ) )
18 1 2 8 9 10 11 16 17 mhpvscacl ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( 𝐻𝑁 ) ) ) → ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) )
19 18 ralrimivva ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) )
20 2 mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ LMod )
21 3 4 20 syl2anc ( 𝜑𝑃 ∈ LMod )
22 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
23 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
24 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
25 eqid ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 )
26 22 23 24 8 25 islss4 ( 𝑃 ∈ LMod → ( ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) ) ) )
27 21 26 syl ( 𝜑 → ( ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐻𝑁 ) ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ ( 𝐻𝑁 ) ( 𝑎 ( ·𝑠𝑃 ) 𝑏 ) ∈ ( 𝐻𝑁 ) ) ) )
28 7 19 27 mpbir2and ( 𝜑 → ( 𝐻𝑁 ) ∈ ( LSubSp ‘ 𝑃 ) )