Step |
Hyp |
Ref |
Expression |
1 |
|
mhpmulcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpmulcl.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpmulcl.t |
⊢ · = ( .r ‘ 𝑌 ) |
4 |
|
mhpmulcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mhpmulcl.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
6 |
|
mhpmulcl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
mhpmulcl.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐻 ‘ 𝑀 ) ) |
8 |
|
mhpmulcl.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐻 ‘ 𝑁 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
12 |
|
reldmmhp |
⊢ Rel dom mHomP |
13 |
12 1 7
|
elfvov1 |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
14 |
1 2 9 13 4 5 7
|
mhpmpl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝑌 ) ) |
15 |
1 2 9 13 4 6 8
|
mhpmpl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑌 ) ) |
16 |
2 9 10 3 11 14 15
|
mplmul |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑑 = 𝑥 → ( 𝑐 ∘r ≤ 𝑑 ↔ 𝑐 ∘r ≤ 𝑥 ) ) |
19 |
18
|
rabbidv |
⊢ ( 𝑑 = 𝑥 → { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
20 |
|
fvoveq1 |
⊢ ( 𝑑 = 𝑥 → ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) = ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑑 = 𝑥 → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) = ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) |
22 |
19 21
|
mpteq12dv |
⊢ ( 𝑑 = 𝑥 → ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑑 = 𝑥 → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑑 = 𝑥 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ∈ V ) |
27 |
17 24 25 26
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
28 |
27
|
neeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
29 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝜑 ) |
30 |
|
oveq2 |
⊢ ( 𝑐 = 𝑒 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑐 = 𝑒 → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ) ) |
32 |
31
|
necon3bbid |
⊢ ( 𝑐 = 𝑒 → ( ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) ) |
33 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
34 |
|
elrabi |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
36 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) |
37 |
32 35 36
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) |
38 |
|
notrab |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } |
39 |
37 38
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
41 |
2 40 9 11 14
|
mplelf |
⊢ ( 𝜑 → 𝑃 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
43 |
1 42 11 13 4 5 7
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑃 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) |
44 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
45 |
44
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
46 |
45
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
47 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
48 |
41 43 46 47
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) ) → ( 𝑃 ‘ 𝑒 ) = ( 0g ‘ 𝑅 ) ) |
49 |
29 39 48
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑃 ‘ 𝑒 ) = ( 0g ‘ 𝑅 ) ) |
50 |
49
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) |
51 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑅 ∈ Ring ) |
52 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 ∈ ( Base ‘ 𝑌 ) ) |
53 |
2 40 9 11 52
|
mplelf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
54 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
55 |
|
eqid |
⊢ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } |
56 |
11 55
|
psrbagconcl |
⊢ ( ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
57 |
54 33 56
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
58 |
|
elrabi |
⊢ ( ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
59 |
57 58
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
60 |
53 59
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) |
61 |
40 10 42
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
62 |
51 60 61
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
63 |
50 62
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
64 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝜑 ) |
65 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) |
66 |
65
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
67 |
66
|
necon3bbid |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ) |
68 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
69 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
70 |
68 69 56
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
71 |
70 58
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
72 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) |
73 |
67 71 72
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) |
74 |
|
notrab |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } |
75 |
73 74
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) ) |
76 |
2 40 9 11 15
|
mplelf |
⊢ ( 𝜑 → 𝑄 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
77 |
1 42 11 13 4 6 8
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑄 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) |
78 |
76 77 46 47
|
suppssr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∘f − 𝑒 ) ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) = ( 0g ‘ 𝑅 ) ) |
79 |
64 75 78
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) = ( 0g ‘ 𝑅 ) ) |
80 |
79
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
81 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑅 ∈ Ring ) |
82 |
14
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑃 ∈ ( Base ‘ 𝑌 ) ) |
83 |
2 40 9 11 82
|
mplelf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑃 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
84 |
34
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
85 |
84
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
86 |
83 85
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑃 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) |
87 |
40 10 42
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑃 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
88 |
81 86 87
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
89 |
80 88
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
90 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
91 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
92 |
91
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
93 |
90 92
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
94 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
95 |
91 94
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
96 |
90 95
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
97 |
|
nn0ex |
⊢ ℕ0 ∈ V |
98 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
99 |
91 98
|
ressplusg |
⊢ ( ℕ0 ∈ V → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
100 |
97 99
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
101 |
|
cnring |
⊢ ℂfld ∈ Ring |
102 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
103 |
101 102
|
ax-mp |
⊢ ℂfld ∈ CMnd |
104 |
91
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
105 |
103 90 104
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
106 |
105
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
107 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝐼 ∈ V ) |
108 |
11
|
psrbagf |
⊢ ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑒 : 𝐼 ⟶ ℕ0 ) |
109 |
84 108
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 : 𝐼 ⟶ ℕ0 ) |
110 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
111 |
11
|
psrbagf |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑥 : 𝐼 ⟶ ℕ0 ) |
112 |
110 111
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
113 |
112
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 Fn 𝐼 ) |
114 |
109
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 Fn 𝐼 ) |
115 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
116 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 𝑖 ) ) |
117 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
118 |
113 114 107 107 115 116 117
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ) ) |
119 |
|
simpl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ) |
120 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
121 |
|
breq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ∘r ≤ 𝑥 ↔ 𝑒 ∘r ≤ 𝑥 ) ) |
122 |
121
|
elrab |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↔ ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑒 ∘r ≤ 𝑥 ) ) |
123 |
122
|
simprbi |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → 𝑒 ∘r ≤ 𝑥 ) |
124 |
120 123
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑒 ∘r ≤ 𝑥 ) |
125 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
126 |
114 113 107 107 115 117 116
|
ofrval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑒 ∘r ≤ 𝑥 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ) |
127 |
119 124 125 126
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ) |
128 |
109
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ∈ ℕ0 ) |
129 |
112
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑖 ) ∈ ℕ0 ) |
130 |
|
nn0sub |
⊢ ( ( ( 𝑒 ‘ 𝑖 ) ∈ ℕ0 ∧ ( 𝑥 ‘ 𝑖 ) ∈ ℕ0 ) → ( ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) ) |
131 |
128 129 130
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) ) |
132 |
127 131
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) |
133 |
118 132
|
fmpt3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) : 𝐼 ⟶ ℕ0 ) |
134 |
109
|
ffund |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → Fun 𝑒 ) |
135 |
|
c0ex |
⊢ 0 ∈ V |
136 |
107 135
|
jctir |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝐼 ∈ V ∧ 0 ∈ V ) ) |
137 |
|
fsuppeq |
⊢ ( ( 𝐼 ∈ V ∧ 0 ∈ V ) → ( 𝑒 : 𝐼 ⟶ ℕ0 → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
138 |
136 109 137
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) |
139 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
140 |
139
|
imaeq2i |
⊢ ( ◡ 𝑒 “ ℕ ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) |
141 |
138 140
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ℕ ) ) |
142 |
11
|
psrbag |
⊢ ( 𝐼 ∈ V → ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) ) |
143 |
107 142
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) ) |
144 |
84 143
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) |
145 |
144
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ◡ 𝑒 “ ℕ ) ∈ Fin ) |
146 |
141 145
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) ∈ Fin ) |
147 |
84
|
elexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 ∈ V ) |
148 |
|
isfsupp |
⊢ ( ( 𝑒 ∈ V ∧ 0 ∈ V ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) ) |
149 |
147 135 148
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) ) |
150 |
134 146 149
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 finSupp 0 ) |
151 |
113 114 107 107
|
offun |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → Fun ( 𝑥 ∘f − 𝑒 ) ) |
152 |
11
|
psrbagfsupp |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑥 finSupp 0 ) |
153 |
110 152
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 finSupp 0 ) |
154 |
153 150
|
fsuppunfi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ∈ Fin ) |
155 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
156 |
155
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 0 ∈ ℕ0 ) |
157 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
158 |
157
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 0 − 0 ) = 0 ) |
159 |
107 156 112 109 158
|
suppofssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ⊆ ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ) |
160 |
154 159
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) |
161 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) ∈ V ) |
162 |
|
isfsupp |
⊢ ( ( ( 𝑥 ∘f − 𝑒 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∘f − 𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥 ∘f − 𝑒 ) ∧ ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) ) ) |
163 |
161 135 162
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥 ∘f − 𝑒 ) ∧ ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) ) ) |
164 |
151 160 163
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) finSupp 0 ) |
165 |
93 96 100 106 107 109 133 150 164
|
gsumadd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ) |
166 |
109
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ ℕ0 ) |
167 |
166
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ ℂ ) |
168 |
112
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑏 ) ∈ ℕ0 ) |
169 |
168
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑏 ) ∈ ℂ ) |
170 |
167 169
|
pncan3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) = ( 𝑥 ‘ 𝑏 ) ) |
171 |
170
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑏 ) ) ) |
172 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ V ) |
173 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ∈ V ) |
174 |
109
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑒 ‘ 𝑏 ) ) ) |
175 |
112
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑏 ) ) ) |
176 |
107 168 166 175 174
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) |
177 |
107 172 173 174 176
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) ) |
178 |
171 177 175
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) = 𝑥 ) |
179 |
178
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ) |
180 |
165 179
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ) |
181 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) |
182 |
180 181
|
eqnetrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) ) |
183 |
|
oveq12 |
⊢ ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) |
184 |
183
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) ) |
185 |
184
|
necon3ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) → ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) ) |
186 |
182 185
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
187 |
|
neorian |
⊢ ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ↔ ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
188 |
186 187
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ) |
189 |
63 89 188
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
190 |
189
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) |
191 |
190
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) ) |
192 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
193 |
4 192
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
194 |
193
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → 𝑅 ∈ Mnd ) |
195 |
45
|
rabex |
⊢ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ∈ V |
196 |
42
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ∈ V ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
197 |
194 195 196
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
198 |
191 197
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
199 |
198
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
200 |
199
|
necon1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
201 |
28 200
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
202 |
201
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
203 |
5 6
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
204 |
2
|
mplring |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
205 |
13 4 204
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
206 |
9 3
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑃 ∈ ( Base ‘ 𝑌 ) ∧ 𝑄 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) ) |
207 |
205 14 15 206
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) ) |
208 |
1 2 9 42 11 13 4 203 207
|
ismhp3 |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ↔ ∀ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) ) |
209 |
202 208
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ) |