Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024) Remove sethood hypothesis. (Revised by SN, 18-May-2025)

Ref Expression
Hypotheses mhpmulcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpmulcl.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mhpmulcl.t · = ( .r𝑌 )
mhpmulcl.r ( 𝜑𝑅 ∈ Ring )
mhpmulcl.m ( 𝜑𝑀 ∈ ℕ0 )
mhpmulcl.n ( 𝜑𝑁 ∈ ℕ0 )
mhpmulcl.p ( 𝜑𝑃 ∈ ( 𝐻𝑀 ) )
mhpmulcl.q ( 𝜑𝑄 ∈ ( 𝐻𝑁 ) )
Assertion mhpmulcl ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 mhpmulcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpmulcl.y 𝑌 = ( 𝐼 mPoly 𝑅 )
3 mhpmulcl.t · = ( .r𝑌 )
4 mhpmulcl.r ( 𝜑𝑅 ∈ Ring )
5 mhpmulcl.m ( 𝜑𝑀 ∈ ℕ0 )
6 mhpmulcl.n ( 𝜑𝑁 ∈ ℕ0 )
7 mhpmulcl.p ( 𝜑𝑃 ∈ ( 𝐻𝑀 ) )
8 mhpmulcl.q ( 𝜑𝑄 ∈ ( 𝐻𝑁 ) )
9 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
12 reldmmhp Rel dom mHomP
13 12 1 7 elfvov1 ( 𝜑𝐼 ∈ V )
14 1 2 9 13 4 5 7 mhpmpl ( 𝜑𝑃 ∈ ( Base ‘ 𝑌 ) )
15 1 2 9 13 4 6 8 mhpmpl ( 𝜑𝑄 ∈ ( Base ‘ 𝑌 ) )
16 2 9 10 3 11 14 15 mplmul ( 𝜑 → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) ) )
17 16 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) ) )
18 breq2 ( 𝑑 = 𝑥 → ( 𝑐r𝑑𝑐r𝑥 ) )
19 18 rabbidv ( 𝑑 = 𝑥 → { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
20 fvoveq1 ( 𝑑 = 𝑥 → ( 𝑄 ‘ ( 𝑑f𝑒 ) ) = ( 𝑄 ‘ ( 𝑥f𝑒 ) ) )
21 20 oveq2d ( 𝑑 = 𝑥 → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) = ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) )
22 19 21 mpteq12dv ( 𝑑 = 𝑥 → ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) )
23 22 oveq2d ( 𝑑 = 𝑥 → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
24 23 adantl ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑑 = 𝑥 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
25 simpr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
26 ovexd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ∈ V )
27 17 24 25 26 fvmptd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
28 27 neeq1d ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) ↔ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ≠ ( 0g𝑅 ) ) )
29 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝜑 )
30 oveq2 ( 𝑐 = 𝑒 → ( ( ℂflds0 ) Σg 𝑐 ) = ( ( ℂflds0 ) Σg 𝑒 ) )
31 30 eqeq1d ( 𝑐 = 𝑒 → ( ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ) )
32 31 necon3bbid ( 𝑐 = 𝑒 → ( ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) )
33 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
34 elrabi ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
35 33 34 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
36 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 )
37 32 35 36 elrabd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } )
38 notrab ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 }
39 37 38 eleqtrrdi ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) )
40 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
41 2 40 9 11 14 mplelf ( 𝜑𝑃 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
42 eqid ( 0g𝑅 ) = ( 0g𝑅 )
43 1 42 11 13 4 5 7 mhpdeg ( 𝜑 → ( 𝑃 supp ( 0g𝑅 ) ) ⊆ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } )
44 ovex ( ℕ0m 𝐼 ) ∈ V
45 44 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
46 45 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
47 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
48 41 43 46 47 suppssr ( ( 𝜑𝑒 ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) ) → ( 𝑃𝑒 ) = ( 0g𝑅 ) )
49 29 39 48 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑃𝑒 ) = ( 0g𝑅 ) )
50 49 oveq1d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) )
51 4 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑅 ∈ Ring )
52 15 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 ∈ ( Base ‘ 𝑌 ) )
53 2 40 9 11 52 mplelf ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
54 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
55 eqid { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 }
56 11 55 psrbagconcl ( ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
57 54 33 56 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
58 elrabi ( ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
59 57 58 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
60 53 59 ffvelcdmd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) )
61 40 10 42 ringlz ( ( 𝑅 ∈ Ring ∧ ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
62 51 60 61 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
63 50 62 eqtrd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
64 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝜑 )
65 oveq2 ( 𝑐 = ( 𝑥f𝑒 ) → ( ( ℂflds0 ) Σg 𝑐 ) = ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) )
66 65 eqeq1d ( 𝑐 = ( 𝑥f𝑒 ) → ( ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
67 66 necon3bbid ( 𝑐 = ( 𝑥f𝑒 ) → ( ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) )
68 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
69 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
70 68 69 56 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
71 70 58 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
72 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 )
73 67 71 72 elrabd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } )
74 notrab ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 }
75 73 74 eleqtrrdi ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) )
76 2 40 9 11 15 mplelf ( 𝜑𝑄 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
77 1 42 11 13 4 6 8 mhpdeg ( 𝜑 → ( 𝑄 supp ( 0g𝑅 ) ) ⊆ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } )
78 76 77 46 47 suppssr ( ( 𝜑 ∧ ( 𝑥f𝑒 ) ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) = ( 0g𝑅 ) )
79 64 75 78 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) = ( 0g𝑅 ) )
80 79 oveq2d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) )
81 4 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑅 ∈ Ring )
82 14 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑃 ∈ ( Base ‘ 𝑌 ) )
83 2 40 9 11 82 mplelf ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑃 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
84 34 adantl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
85 84 adantr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
86 83 85 ffvelcdmd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑃𝑒 ) ∈ ( Base ‘ 𝑅 ) )
87 40 10 42 ringrz ( ( 𝑅 ∈ Ring ∧ ( 𝑃𝑒 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
88 81 86 87 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
89 80 88 eqtrd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
90 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
91 eqid ( ℂflds0 ) = ( ℂflds0 )
92 91 submbas ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂflds0 ) ) )
93 90 92 ax-mp 0 = ( Base ‘ ( ℂflds0 ) )
94 cnfld0 0 = ( 0g ‘ ℂfld )
95 91 94 subm0 ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds0 ) ) )
96 90 95 ax-mp 0 = ( 0g ‘ ( ℂflds0 ) )
97 nn0ex 0 ∈ V
98 cnfldadd + = ( +g ‘ ℂfld )
99 91 98 ressplusg ( ℕ0 ∈ V → + = ( +g ‘ ( ℂflds0 ) ) )
100 97 99 ax-mp + = ( +g ‘ ( ℂflds0 ) )
101 cnring fld ∈ Ring
102 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
103 101 102 ax-mp fld ∈ CMnd
104 91 submcmn ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂflds0 ) ∈ CMnd )
105 103 90 104 mp2an ( ℂflds0 ) ∈ CMnd
106 105 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ℂflds0 ) ∈ CMnd )
107 13 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝐼 ∈ V )
108 11 psrbagf ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑒 : 𝐼 ⟶ ℕ0 )
109 84 108 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 : 𝐼 ⟶ ℕ0 )
110 simpllr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
111 11 psrbagf ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑥 : 𝐼 ⟶ ℕ0 )
112 110 111 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
113 112 ffnd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 Fn 𝐼 )
114 109 ffnd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 Fn 𝐼 )
115 inidm ( 𝐼𝐼 ) = 𝐼
116 eqidd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑥𝑖 ) = ( 𝑥𝑖 ) )
117 eqidd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) = ( 𝑒𝑖 ) )
118 113 114 107 107 115 116 117 offval ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) = ( 𝑖𝐼 ↦ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ) )
119 simpl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) )
120 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
121 breq1 ( 𝑐 = 𝑒 → ( 𝑐r𝑥𝑒r𝑥 ) )
122 121 elrab ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↔ ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑒r𝑥 ) )
123 122 simprbi ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → 𝑒r𝑥 )
124 120 123 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑒r𝑥 )
125 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑖𝐼 )
126 114 113 107 107 115 117 116 ofrval ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑒r𝑥𝑖𝐼 ) → ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) )
127 119 124 125 126 syl3anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) )
128 109 ffvelcdmda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) ∈ ℕ0 )
129 112 ffvelcdmda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑥𝑖 ) ∈ ℕ0 )
130 nn0sub ( ( ( 𝑒𝑖 ) ∈ ℕ0 ∧ ( 𝑥𝑖 ) ∈ ℕ0 ) → ( ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) ↔ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 ) )
131 128 129 130 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) ↔ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 ) )
132 127 131 mpbid ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 )
133 118 132 fmpt3d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) : 𝐼 ⟶ ℕ0 )
134 109 ffund ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → Fun 𝑒 )
135 c0ex 0 ∈ V
136 107 135 jctir ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝐼 ∈ V ∧ 0 ∈ V ) )
137 fsuppeq ( ( 𝐼 ∈ V ∧ 0 ∈ V ) → ( 𝑒 : 𝐼 ⟶ ℕ0 → ( 𝑒 supp 0 ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) )
138 136 109 137 sylc ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) ) )
139 dfn2 ℕ = ( ℕ0 ∖ { 0 } )
140 139 imaeq2i ( 𝑒 “ ℕ ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) )
141 138 140 eqtr4di ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) = ( 𝑒 “ ℕ ) )
142 11 psrbag ( 𝐼 ∈ V → ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) ) )
143 107 142 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) ) )
144 84 143 mpbid ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) )
145 144 simprd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 “ ℕ ) ∈ Fin )
146 141 145 eqeltrd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) ∈ Fin )
147 84 elexd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 ∈ V )
148 isfsupp ( ( 𝑒 ∈ V ∧ 0 ∈ V ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) )
149 147 135 148 sylancl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) )
150 134 146 149 mpbir2and ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 finSupp 0 )
151 113 114 107 107 offun ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → Fun ( 𝑥f𝑒 ) )
152 11 psrbagfsupp ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑥 finSupp 0 )
153 110 152 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 finSupp 0 )
154 153 150 fsuppunfi ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ∈ Fin )
155 0nn0 0 ∈ ℕ0
156 155 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 0 ∈ ℕ0 )
157 0m0e0 ( 0 − 0 ) = 0
158 157 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 0 − 0 ) = 0 )
159 107 156 112 109 158 suppofssd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) supp 0 ) ⊆ ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) )
160 154 159 ssfid ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin )
161 ovexd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) ∈ V )
162 isfsupp ( ( ( 𝑥f𝑒 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥f𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥f𝑒 ) ∧ ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin ) ) )
163 161 135 162 sylancl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥f𝑒 ) ∧ ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin ) ) )
164 151 160 163 mpbir2and ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) finSupp 0 )
165 93 96 100 106 107 109 133 150 164 gsumadd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg ( 𝑒f + ( 𝑥f𝑒 ) ) ) = ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) )
166 109 ffvelcdmda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ ℕ0 )
167 166 nn0cnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ ℂ )
168 112 ffvelcdmda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑥𝑏 ) ∈ ℕ0 )
169 168 nn0cnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑥𝑏 ) ∈ ℂ )
170 167 169 pncan3d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) = ( 𝑥𝑏 ) )
171 170 mpteq2dva ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑏𝐼 ↦ ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) ) = ( 𝑏𝐼 ↦ ( 𝑥𝑏 ) ) )
172 fvexd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ V )
173 ovexd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ∈ V )
174 109 feqmptd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 = ( 𝑏𝐼 ↦ ( 𝑒𝑏 ) ) )
175 112 feqmptd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 = ( 𝑏𝐼 ↦ ( 𝑥𝑏 ) ) )
176 107 168 166 175 174 offval2 ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) = ( 𝑏𝐼 ↦ ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) )
177 107 172 173 174 176 offval2 ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒f + ( 𝑥f𝑒 ) ) = ( 𝑏𝐼 ↦ ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) ) )
178 171 177 175 3eqtr4d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒f + ( 𝑥f𝑒 ) ) = 𝑥 )
179 178 oveq2d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg ( 𝑒f + ( 𝑥f𝑒 ) ) ) = ( ( ℂflds0 ) Σg 𝑥 ) )
180 165 179 eqtr3d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( ( ℂflds0 ) Σg 𝑥 ) )
181 simplr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) )
182 180 181 eqnetrd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) )
183 oveq12 ( ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( 𝑀 + 𝑁 ) )
184 183 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) )
185 184 necon3ad ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) → ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) ) )
186 182 185 mpd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
187 neorian ( ( ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) ↔ ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
188 186 187 sylibr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) )
189 63 89 188 mpjaodan ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
190 189 mpteq2dva ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) )
191 190 oveq2d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) )
192 ringmnd ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd )
193 4 192 syl ( 𝜑𝑅 ∈ Mnd )
194 193 ad2antrr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → 𝑅 ∈ Mnd )
195 45 rabex { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ∈ V
196 42 gsumz ( ( 𝑅 ∈ Mnd ∧ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ∈ V ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) = ( 0g𝑅 ) )
197 194 195 196 sylancl ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) = ( 0g𝑅 ) )
198 191 197 eqtrd ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 0g𝑅 ) )
199 198 ex ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 0g𝑅 ) ) )
200 199 necon1d ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
201 28 200 sylbid ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
202 201 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
203 5 6 nn0addcld ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ℕ0 )
204 2 mplring ( ( 𝐼 ∈ V ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
205 13 4 204 syl2anc ( 𝜑𝑌 ∈ Ring )
206 9 3 ringcl ( ( 𝑌 ∈ Ring ∧ 𝑃 ∈ ( Base ‘ 𝑌 ) ∧ 𝑄 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) )
207 205 14 15 206 syl3anc ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) )
208 1 2 9 42 11 13 4 203 207 ismhp3 ( 𝜑 → ( ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ↔ ∀ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) )
209 202 208 mpbird ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) )