Step |
Hyp |
Ref |
Expression |
1 |
|
mhpvscacl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpvscacl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpvscacl.t |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
4 |
|
mhpvscacl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
mhpvscacl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
mhpvscacl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
mhpvscacl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
8 |
|
mhpvscacl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐻 ‘ 𝑁 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
12 |
|
reldmmhp |
⊢ Rel dom mHomP |
13 |
12 1 8
|
elfvov1 |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
14 |
2
|
mpllmod |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
15 |
13 5 14
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
16 |
7 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
17 |
2 13 5
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
19 |
16 18
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
20 |
1 2 9 13 5 6 8
|
mhpmpl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
21 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
22 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
23 |
9 21 3 22
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝐹 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 · 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
24 |
15 19 20 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
25 |
2 4 9 11 24
|
mplelf |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
26 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝑋 ∈ 𝐾 ) |
28 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
29 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
31 |
2 3 4 9 26 11 27 28 30
|
mplvscaval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 · 𝐹 ) ‘ 𝑘 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑘 ) ) ) |
32 |
2 4 9 11 20
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
33 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) |
34 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
35 |
11 34
|
rabexd |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
36 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
37 |
32 33 35 36
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑘 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
39 |
4 26 10
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
40 |
5 7 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
42 |
31 38 41
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑋 · 𝐹 ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
43 |
25 42
|
suppss |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐹 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) |
44 |
1 10 11 13 5 6 8
|
mhpdeg |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
45 |
43 44
|
sstrd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐹 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
46 |
1 2 9 10 11 13 5 6 24 45
|
ismhp2 |
⊢ ( 𝜑 → ( 𝑋 · 𝐹 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |