Metamath Proof Explorer


Theorem midcgr

Description: Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
midcl.1 ( 𝜑𝐴𝑃 )
midcl.2 ( 𝜑𝐵𝑃 )
midcgr.1 ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝐶 )
Assertion midcgr ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 midcl.1 ( 𝜑𝐴𝑃 )
7 midcl.2 ( 𝜑𝐵𝑃 )
8 midcgr.1 ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝐶 )
9 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
10 1 2 3 4 5 6 7 midcl ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 )
11 8 10 eqeltrrd ( 𝜑𝐶𝑃 )
12 1 2 3 4 5 6 7 9 11 ismidb ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝐶 ) )
13 8 12 mpbird ( 𝜑𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) )
14 13 oveq2d ( 𝜑 → ( 𝐶 𝐵 ) = ( 𝐶 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) )
15 eqid ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 )
16 eqid ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 )
17 1 2 3 15 9 4 11 16 6 mircgr ( 𝜑 → ( 𝐶 ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = ( 𝐶 𝐴 ) )
18 14 17 eqtr2d ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐶 𝐵 ) )