Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
midcgr.1 |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝐶 ) |
9 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
10 |
1 2 3 4 5 6 7
|
midcl |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |
11 |
8 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
12 |
1 2 3 4 5 6 7 9 11
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝐶 ) ) |
13 |
8 12
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 − 𝐵 ) = ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
15 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) |
17 |
1 2 3 15 9 4 11 16 6
|
mircgr |
⊢ ( 𝜑 → ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐶 ) ‘ 𝐴 ) ) = ( 𝐶 − 𝐴 ) ) |
18 |
14 17
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |