Description: Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | ||
midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
Assertion | midcl | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
5 | ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | |
6 | midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
7 | midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
8 | 1 2 3 4 5 | midf | ⊢ ( 𝜑 → ( midG ‘ 𝐺 ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ) |
9 | 8 6 7 | fovrnd | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |