Description: Lemma for opphllem , which is itself used for mideu . (Contributed by Thierry Arnoux, 19-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | colperpex.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
colperpex.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
colperpex.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
colperpex.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | ||
colperpex.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
mideu.s | ⊢ 𝑆 = ( pInvG ‘ 𝐺 ) | ||
mideu.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
mideu.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
mideulem.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
mideulem.2 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | ||
mideulem.3 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑃 ) | ||
mideulem.4 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) | ||
mideulem.5 | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) | ||
mideulem.6 | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) | ||
mideulem.7 | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) | ||
mideulem.8 | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) | ||
opphllem.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | ||
opphllem.2 | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐵 𝐼 𝑄 ) ) | ||
opphllem.3 | ⊢ ( 𝜑 → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) | ||
mideulem2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | ||
mideulem2.2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 𝐼 𝐵 ) ) | ||
mideulem2.3 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) | ||
mideulem2.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | ||
mideulem2.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) | ||
mideulem2.6 | ⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( 𝑋 − 𝑅 ) ) | ||
mideulem2.7 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) | ||
mideulem2.8 | ⊢ ( 𝜑 → 𝑅 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) | ||
Assertion | mideulem2 | ⊢ ( 𝜑 → 𝐵 = 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | colperpex.d | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | colperpex.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | colperpex.l | ⊢ 𝐿 = ( LineG ‘ 𝐺 ) | |
5 | colperpex.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
6 | mideu.s | ⊢ 𝑆 = ( pInvG ‘ 𝐺 ) | |
7 | mideu.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
8 | mideu.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
9 | mideulem.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
10 | mideulem.2 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) | |
11 | mideulem.3 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑃 ) | |
12 | mideulem.4 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) | |
13 | mideulem.5 | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) | |
14 | mideulem.6 | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) | |
15 | mideulem.7 | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) | |
16 | mideulem.8 | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) | |
17 | opphllem.1 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) | |
18 | opphllem.2 | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐵 𝐼 𝑄 ) ) | |
19 | opphllem.3 | ⊢ ( 𝜑 → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) | |
20 | mideulem2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) | |
21 | mideulem2.2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 𝐼 𝐵 ) ) | |
22 | mideulem2.3 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) | |
23 | mideulem2.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) | |
24 | mideulem2.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) | |
25 | mideulem2.6 | ⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( 𝑋 − 𝑅 ) ) | |
26 | mideulem2.7 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) | |
27 | mideulem2.8 | ⊢ ( 𝜑 → 𝑅 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) | |
28 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝐵 ) ) | |
29 | 28 | breq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
30 | oveq2 | ⊢ ( 𝑦 = 𝑀 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝑀 ) ) | |
31 | 30 | breq1d | ⊢ ( 𝑦 = 𝑀 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝑀 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
32 | 1 3 4 5 7 8 9 | tgelrnln | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
33 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
34 | 33 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ 𝐴 = 𝐵 ) |
35 | 4 5 14 | perpln2 | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝑂 ) ∈ ran 𝐿 ) |
36 | 1 3 4 5 7 11 35 | tglnne | ⊢ ( 𝜑 → 𝐴 ≠ 𝑂 ) |
37 | 1 2 3 5 7 11 8 17 19 36 | tgcgrneq | ⊢ ( 𝜑 → 𝐵 ≠ 𝑅 ) |
38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐵 ≠ 𝑅 ) |
39 | 38 | necomd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑅 ≠ 𝐵 ) |
40 | 39 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ 𝑅 = 𝐵 ) |
41 | 34 40 | jca | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) |
42 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
43 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
44 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
45 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑅 ∈ 𝑃 ) |
46 | 4 5 13 | perpln2 | ⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ∈ ran 𝐿 ) |
47 | 1 3 4 5 10 8 46 | tglnne | ⊢ ( 𝜑 → 𝑄 ≠ 𝐵 ) |
48 | 1 3 4 5 10 8 47 | tglinerflx2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑄 𝐿 𝐵 ) ) |
49 | 1 2 3 4 5 32 46 13 | perpcom | ⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
50 | 1 3 4 5 7 8 9 | tglinecom | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) = ( 𝐵 𝐿 𝐴 ) ) |
51 | 49 50 | breqtrd | ⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) |
52 | 1 2 3 4 5 10 8 48 7 51 | perprag | ⊢ ( 𝜑 → 〈“ 𝑄 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
53 | 1 4 3 5 8 17 10 18 | btwncolg3 | ⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝐵 𝐿 𝑅 ) ∨ 𝐵 = 𝑅 ) ) |
54 | 1 2 3 4 6 5 10 8 7 17 52 47 53 | ragcol | ⊢ ( 𝜑 → 〈“ 𝑅 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
55 | 1 2 3 4 6 5 17 8 7 54 | ragcom | ⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝑅 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 〈“ 𝐴 𝐵 𝑅 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
57 | animorrl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) | |
58 | 1 2 3 4 6 42 43 44 45 56 57 | ragflat3 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( 𝐴 = 𝐵 ∨ 𝑅 = 𝐵 ) ) |
59 | oran | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝑅 = 𝐵 ) ↔ ¬ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) | |
60 | 58 59 | sylib | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) |
61 | 41 60 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) |
62 | 1 2 3 4 5 32 17 61 | foot | ⊢ ( 𝜑 → ∃! 𝑦 ∈ ( 𝐴 𝐿 𝐵 ) ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
63 | 1 3 4 5 7 8 9 | tglinerflx2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) ) |
64 | 9 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
65 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝐴 ) ) | |
66 | 65 | breq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
67 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ∃! 𝑦 ∈ ( 𝐴 𝐿 𝐵 ) ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
68 | 1 3 4 5 7 8 9 | tglinerflx1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
70 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) ) |
71 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐺 ∈ TarskiG ) |
72 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ∈ 𝑃 ) |
73 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ∈ 𝑃 ) |
74 | 61 64 | jca | ⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ) |
75 | pm4.56 | ⊢ ( ( ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ↔ ¬ ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) | |
76 | 74 75 | sylib | ⊢ ( 𝜑 → ¬ ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
77 | 1 3 4 5 17 7 8 76 | ncolne1 | ⊢ ( 𝜑 → 𝑅 ≠ 𝐴 ) |
78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ≠ 𝐴 ) |
79 | 1 3 4 71 72 73 78 | tglinecom | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) = ( 𝐴 𝐿 𝑅 ) ) |
80 | 78 | necomd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ≠ 𝑅 ) |
81 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ 𝑃 ) |
82 | 36 | necomd | ⊢ ( 𝜑 → 𝑂 ≠ 𝐴 ) |
83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ≠ 𝐴 ) |
84 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ 𝑃 ) |
85 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 = 𝐴 ) | |
86 | 85 80 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ≠ 𝑅 ) |
87 | 1 2 3 5 17 20 11 22 | tgbtwncom | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑂 𝐼 𝑅 ) ) |
88 | 1 3 4 5 12 7 8 20 15 21 | coltr3 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
89 | 9 | necomd | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
90 | 89 | neneqd | ⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
91 | 90 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝐵 = 𝐴 ) |
92 | 82 | neneqd | ⊢ ( 𝜑 → ¬ 𝑂 = 𝐴 ) |
93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝑂 = 𝐴 ) |
94 | 91 93 | jca | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
95 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
96 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
97 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
98 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝑂 ∈ 𝑃 ) |
99 | 1 3 4 5 8 7 89 | tglinerflx2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐴 ) ) |
100 | 50 14 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝐵 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
101 | 1 2 3 4 5 8 7 99 11 100 | perprag | ⊢ ( 𝜑 → 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
102 | 101 | adantr | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
103 | animorrl | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) | |
104 | 1 2 3 4 6 95 96 97 98 102 103 | ragflat3 | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ) |
105 | oran | ⊢ ( ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ↔ ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) | |
106 | 104 105 | sylib | ⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
107 | 94 106 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) |
108 | 107 50 | neleqtrrd | ⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) |
109 | nelne2 | ⊢ ( ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑋 ≠ 𝑂 ) | |
110 | 88 108 109 | syl2anc | ⊢ ( 𝜑 → 𝑋 ≠ 𝑂 ) |
111 | 1 2 3 5 11 20 17 87 110 | tgbtwnne | ⊢ ( 𝜑 → 𝑂 ≠ 𝑅 ) |
112 | 111 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ≠ 𝑅 ) |
113 | 112 | necomd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ≠ 𝑂 ) |
114 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) |
115 | 1 3 4 71 72 81 84 113 114 | btwnlng1 | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ ( 𝑅 𝐿 𝑂 ) ) |
116 | 1 3 4 71 84 72 81 86 115 113 | lnrot2 | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ ( 𝑋 𝐿 𝑅 ) ) |
117 | 85 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑋 𝐿 𝑅 ) = ( 𝐴 𝐿 𝑅 ) ) |
118 | 116 117 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ ( 𝐴 𝐿 𝑅 ) ) |
119 | 1 3 4 71 73 72 80 81 83 118 | tglineelsb2 | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝑅 ) = ( 𝐴 𝐿 𝑂 ) ) |
120 | 79 119 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) = ( 𝐴 𝐿 𝑂 ) ) |
121 | 1 2 3 4 5 32 35 14 | perpcom | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝑂 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝑂 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
123 | 120 122 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
124 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
125 | 37 | necomd | ⊢ ( 𝜑 → 𝑅 ≠ 𝐵 ) |
126 | 1 3 4 5 17 8 125 | tgelrnln | ⊢ ( 𝜑 → ( 𝑅 𝐿 𝐵 ) ∈ ran 𝐿 ) |
127 | 126 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐵 ) ∈ ran 𝐿 ) |
128 | 1 3 4 5 17 8 125 | tglinerflx2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 𝐿 𝐵 ) ) |
129 | 63 128 | elind | ⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝑅 𝐿 𝐵 ) ) ) |
130 | 1 3 4 5 17 8 125 | tglinerflx1 | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑅 𝐿 𝐵 ) ) |
131 | 1 2 3 4 5 32 126 129 68 130 9 125 55 | ragperp | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝐵 ) ) |
132 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝐵 ) ) |
133 | 1 2 3 4 71 124 127 132 | perpcom | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
134 | 66 29 67 69 70 123 133 | reu2eqd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 = 𝐵 ) |
135 | 64 134 | mtand | ⊢ ( 𝜑 → ¬ 𝑋 = 𝐴 ) |
136 | 135 | neqned | ⊢ ( 𝜑 → 𝑋 ≠ 𝐴 ) |
137 | 136 | necomd | ⊢ ( 𝜑 → 𝐴 ≠ 𝑋 ) |
138 | eqid | ⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) | |
139 | eqid | ⊢ ( 𝑆 ‘ 𝑀 ) = ( 𝑆 ‘ 𝑀 ) | |
140 | 1 2 3 4 6 5 7 138 11 | mircl | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
141 | 88 | orcd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
142 | 1 4 3 5 7 8 20 141 | colcom | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
143 | 1 4 3 5 8 7 20 142 | colrot1 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
144 | 1 2 3 4 6 5 8 7 11 20 101 89 143 | ragcol | ⊢ ( 𝜑 → 〈“ 𝑋 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
145 | 1 2 3 4 6 5 20 7 11 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑋 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) ) |
146 | 144 145 | mpbid | ⊢ ( 𝜑 → ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
147 | 25 | eqcomd | ⊢ ( 𝜑 → ( 𝑋 − 𝑅 ) = ( 𝑋 − 𝑍 ) ) |
148 | eqidd | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) | |
149 | 27 | eqcomd | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) = 𝑅 ) |
150 | 1 2 3 4 6 5 26 139 23 149 | mircom | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) = 𝑍 ) |
151 | 150 | eqcomd | ⊢ ( 𝜑 → 𝑍 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) |
152 | 1 2 3 4 6 5 138 139 11 140 20 17 23 7 26 87 24 146 147 148 151 | krippen | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐼 𝑀 ) ) |
153 | 1 3 4 5 7 20 26 137 152 | btwnlng3 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 𝐿 𝑋 ) ) |
154 | 1 3 4 5 7 8 9 20 136 88 26 153 | tglineeltr | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ) |
155 | 1 2 3 4 5 32 126 131 | perpcom | ⊢ ( 𝜑 → ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
156 | nelne2 | ⊢ ( ( 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑀 ≠ 𝑅 ) | |
157 | 154 61 156 | syl2anc | ⊢ ( 𝜑 → 𝑀 ≠ 𝑅 ) |
158 | 157 | necomd | ⊢ ( 𝜑 → 𝑅 ≠ 𝑀 ) |
159 | 1 3 4 5 17 26 158 | tgelrnln | ⊢ ( 𝜑 → ( 𝑅 𝐿 𝑀 ) ∈ ran 𝐿 ) |
160 | 1 3 4 5 17 26 158 | tglinerflx2 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 𝐿 𝑀 ) ) |
161 | 154 160 | elind | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝑅 𝐿 𝑀 ) ) ) |
162 | 1 3 4 5 17 26 158 | tglinerflx1 | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑅 𝐿 𝑀 ) ) |
163 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 = 𝑋 ) | |
164 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝐺 ∈ TarskiG ) |
165 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ 𝑃 ) |
166 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝐴 ∈ 𝑃 ) |
167 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑂 ∈ 𝑃 ) |
168 | 140 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
169 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
170 | 163 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑂 ) = ( 𝑋 − 𝑂 ) ) |
171 | 163 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
172 | 169 170 171 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝑀 − 𝑂 ) ) |
173 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑍 ∈ 𝑃 ) |
174 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 ∈ 𝑃 ) |
175 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) |
176 | 175 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑅 ) = ( 𝑀 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) ) |
177 | 1 2 3 4 6 164 165 139 173 | mircgr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) = ( 𝑀 − 𝑍 ) ) |
178 | 176 177 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑅 ) = ( 𝑀 − 𝑍 ) ) |
179 | 1 2 3 164 165 174 165 173 178 | tgcgrcomlr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑅 − 𝑀 ) = ( 𝑍 − 𝑀 ) ) |
180 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
181 | 163 180 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ) |
182 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) |
183 | 181 182 156 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ≠ 𝑅 ) |
184 | 183 | necomd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 ≠ 𝑀 ) |
185 | 1 2 3 164 174 165 173 165 179 184 | tgcgrneq | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑍 ≠ 𝑀 ) |
186 | 1 2 3 4 6 5 26 139 23 | mirbtwn | ⊢ ( 𝜑 → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) 𝐼 𝑍 ) ) |
187 | 27 | oveq1d | ⊢ ( 𝜑 → ( 𝑅 𝐼 𝑍 ) = ( ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) 𝐼 𝑍 ) ) |
188 | 186 187 | eleqtrrd | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 𝐼 𝑍 ) ) |
189 | 188 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑅 𝐼 𝑍 ) ) |
190 | 1 2 3 164 174 165 173 189 | tgbtwncom | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑍 𝐼 𝑅 ) ) |
191 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) |
192 | 163 191 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) |
193 | 1 2 3 164 168 165 173 192 | tgbtwncom | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑍 𝐼 ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
194 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) |
195 | 163 194 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑅 𝐼 𝑂 ) ) |
196 | 1 3 164 173 165 174 168 167 185 184 190 193 195 | tgbtwnconn22 | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑂 ) ) |
197 | 1 2 3 4 6 164 165 139 167 168 172 196 | ismir | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑂 ) ) |
198 | 197 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) |
199 | 1 2 3 4 6 164 165 166 167 198 | miduniq1 | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 = 𝐴 ) |
200 | 163 199 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 = 𝐴 ) |
201 | 135 200 | mtand | ⊢ ( 𝜑 → ¬ 𝑀 = 𝑋 ) |
202 | 201 | neqned | ⊢ ( 𝜑 → 𝑀 ≠ 𝑋 ) |
203 | 202 | necomd | ⊢ ( 𝜑 → 𝑋 ≠ 𝑀 ) |
204 | 150 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) = ( 𝑋 − 𝑍 ) ) |
205 | 204 25 | eqtr2d | ⊢ ( 𝜑 → ( 𝑋 − 𝑅 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) ) |
206 | 1 2 3 4 6 5 20 26 17 | israg | ⊢ ( 𝜑 → ( 〈“ 𝑋 𝑀 𝑅 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑋 − 𝑅 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) ) ) |
207 | 205 206 | mpbird | ⊢ ( 𝜑 → 〈“ 𝑋 𝑀 𝑅 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
208 | 1 2 3 4 5 32 159 161 88 162 203 158 207 | ragperp | ⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝑀 ) ) |
209 | 1 2 3 4 5 32 159 208 | perpcom | ⊢ ( 𝜑 → ( 𝑅 𝐿 𝑀 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
210 | 29 31 62 63 154 155 209 | reu2eqd | ⊢ ( 𝜑 → 𝐵 = 𝑀 ) |