Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 ∈ TarskiG ) |
8 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑎 ∈ 𝑃 ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑏 ∈ 𝑃 ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 DimTarskiG≥ 2 ) |
12 |
1 2 3 6 7 8 9 10 11
|
mideu |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ∃! 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) |
13 |
12
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ∃! 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) |
14 |
|
riotacl |
⊢ ( ∃! 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) → ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ∈ 𝑃 ) |
15 |
14
|
2ralimi |
⊢ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ∃! 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ∈ 𝑃 ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ∈ 𝑃 ) |
17 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
18 |
17
|
fmpo |
⊢ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ∈ 𝑃 ↔ ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ) |
19 |
16 18
|
sylib |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ) |
20 |
|
df-mid |
⊢ midG = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
22 |
21 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑃 ) |
23 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( pInvG ‘ 𝑔 ) = ( pInvG ‘ 𝐺 ) ) |
24 |
23
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ↔ 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
27 |
22 26
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) = ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
28 |
22 22 27
|
mpoeq123dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
29 |
4
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
30 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
31 |
30 30
|
mpoex |
⊢ ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ∈ V ) |
33 |
20 28 29 32
|
fvmptd3 |
⊢ ( 𝜑 → ( midG ‘ 𝐺 ) = ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
34 |
33
|
feq1d |
⊢ ( 𝜑 → ( ( midG ‘ 𝐺 ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ↔ ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ) ) |
35 |
19 34
|
mpbird |
⊢ ( 𝜑 → ( midG ‘ 𝐺 ) : ( 𝑃 × 𝑃 ) ⟶ 𝑃 ) |