Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | ||
midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
Assertion | midid | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | ismid.d | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | ismid.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | ismid.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
5 | ismid.1 | ⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) | |
6 | midcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
7 | midcl.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
8 | 1 2 3 4 5 6 6 | midcl | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝑃 ) |
9 | 1 2 3 4 5 6 6 | midbtwn | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐴 𝐼 𝐴 ) ) |
10 | 1 2 3 4 6 8 9 | axtgbtwnid | ⊢ ( 𝜑 → 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ) |
11 | 10 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 ) |