Metamath Proof Explorer


Theorem midid

Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
midcl.1 ( 𝜑𝐴𝑃 )
midcl.2 ( 𝜑𝐵𝑃 )
Assertion midid ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 midcl.1 ( 𝜑𝐴𝑃 )
7 midcl.2 ( 𝜑𝐵𝑃 )
8 1 2 3 4 5 6 6 midcl ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ 𝑃 )
9 1 2 3 4 5 6 6 midbtwn ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐴 𝐼 𝐴 ) )
10 1 2 3 4 6 8 9 axtgbtwnid ( 𝜑𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) )
11 10 eqcomd ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 ) = 𝐴 )