| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
miduniq2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
miduniq2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
miduniq2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 10 |
|
miduniq2.e |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) |
| 11 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
| 12 |
1 2 3 4 5 6 8 11
|
mirf |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) : 𝑃 ⟶ 𝑃 ) |
| 13 |
12 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ∈ 𝑃 ) |
| 14 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) |
| 15 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) |
| 16 |
|
eqid |
⊢ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) |
| 17 |
12 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ∈ 𝑃 ) |
| 18 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
| 19 |
1 2 3 4 5 6 7 18 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ∈ 𝑃 ) |
| 20 |
12 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ∈ 𝑃 ) |
| 21 |
1 2 3 4 5 6 11 14 15 16 8 7 17 20 10
|
mirauto |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) ) |
| 22 |
1 2 3 4 5 6 8 11 9
|
mirmir |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) ) |
| 24 |
1 2 3 4 5 6 8 11 19
|
mirmir |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) |
| 25 |
21 23 24
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) ) ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑋 ) ) |
| 26 |
1 2 3 4 5 6 13 7 9 25
|
miduniq1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = 𝐴 ) |
| 27 |
1 2 3 4 5 6 8 11 7
|
mirinv |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐴 ) = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
| 28 |
26 27
|
mpbid |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 29 |
28
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |