Metamath Proof Explorer


Theorem min1d

Description: The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses min1d.1 ( 𝜑𝐴 ∈ ℝ )
min1d.2 ( 𝜑𝐵 ∈ ℝ )
Assertion min1d ( 𝜑 → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 min1d.1 ( 𝜑𝐴 ∈ ℝ )
2 min1d.2 ( 𝜑𝐵 ∈ ℝ )
3 min1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 )
4 1 2 3 syl2anc ( 𝜑 → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 )