Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | min2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
2 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
3 | xrmin2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) |