Metamath Proof Explorer


Theorem min2

Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion min2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 xrmin2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )