Metamath Proof Explorer


Theorem min2d

Description: The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses min2d.1 ( 𝜑𝐴 ∈ ℝ )
min2d.2 ( 𝜑𝐵 ∈ ℝ )
Assertion min2d ( 𝜑 → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 min2d.1 ( 𝜑𝐴 ∈ ℝ )
2 min2d.2 ( 𝜑𝐵 ∈ ℝ )
3 min2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )
4 1 2 3 syl2anc ( 𝜑 → if ( 𝐴𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 )