Description: The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | min2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
min2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
Assertion | min2d | ⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | min2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | min2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | min2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐵 ) |