Step |
Hyp |
Ref |
Expression |
1 |
|
minmar1fval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
minmar1fval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
minmar1fval.q |
⊢ 𝑄 = ( 𝑁 minMatR1 𝑅 ) |
4 |
|
minmar1fval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
minmar1fval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
10 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
11 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
12 |
11 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
14 |
13 5
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
15 |
12 14
|
ifeq12d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑗 = 𝑙 , 1 , 0 ) ) |
16 |
15
|
ifeq1d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) |
18 |
10 10 17
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) |
19 |
10 10 18
|
mpoeq123dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
20 |
9 19
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
21 |
|
df-minmar1 |
⊢ minMatR1 = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
22 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
23 |
22
|
mptex |
⊢ ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ∈ V |
24 |
20 21 23
|
ovmpoa |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 minMatR1 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
25 |
21
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 minMatR1 𝑅 ) = ∅ ) |
26 |
|
mpt0 |
⊢ ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ∅ |
27 |
25 26
|
eqtr4di |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 minMatR1 𝑅 ) = ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
28 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
29 |
2 28
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
30 |
|
matbas0pc |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ∅ ) |
31 |
29 30
|
syl5eq |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
32 |
31
|
mpteq1d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) = ( 𝑚 ∈ ∅ ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
33 |
27 32
|
eqtr4d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 minMatR1 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) |
34 |
24 33
|
pm2.61i |
⊢ ( 𝑁 minMatR1 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
35 |
3 34
|
eqtri |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |