| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minmar1fval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | minmar1fval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | minmar1fval.q | ⊢ 𝑄  =  ( 𝑁  minMatR1  𝑅 ) | 
						
							| 4 |  | minmar1fval.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | minmar1fval.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  ( 𝑁  Mat  𝑅 ) ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  𝐴 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 9 | 8 2 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  =  𝐵 ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑛  =  𝑁 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 12 | 11 4 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =   1  ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 14 | 13 5 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =   0  ) | 
						
							| 15 | 12 14 | ifeq12d | ⊢ ( 𝑟  =  𝑅  →  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) )  =  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ) | 
						
							| 16 | 15 | ifeq1d | ⊢ ( 𝑟  =  𝑅  →  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) )  =  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) )  =  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) | 
						
							| 18 | 10 10 17 | mpoeq123dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑖  ∈  𝑛 ,  𝑗  ∈  𝑛  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) | 
						
							| 19 | 10 10 18 | mpoeq123dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑘  ∈  𝑛 ,  𝑙  ∈  𝑛  ↦  ( 𝑖  ∈  𝑛 ,  𝑗  ∈  𝑛  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) | 
						
							| 20 | 9 19 | mpteq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( 𝑘  ∈  𝑛 ,  𝑙  ∈  𝑛  ↦  ( 𝑖  ∈  𝑛 ,  𝑗  ∈  𝑛  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 21 |  | df-minmar1 | ⊢  minMatR1   =  ( 𝑛  ∈  V ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ↦  ( 𝑘  ∈  𝑛 ,  𝑙  ∈  𝑛  ↦  ( 𝑖  ∈  𝑛 ,  𝑗  ∈  𝑛  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,  ( 1r ‘ 𝑟 ) ,  ( 0g ‘ 𝑟 ) ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 22 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 23 | 22 | mptex | ⊢ ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) )  ∈  V | 
						
							| 24 | 20 21 23 | ovmpoa | ⊢ ( ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑁  minMatR1  𝑅 )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 25 | 21 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑁  minMatR1  𝑅 )  =  ∅ ) | 
						
							| 26 |  | mpt0 | ⊢ ( 𝑚  ∈  ∅  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) )  =  ∅ | 
						
							| 27 | 25 26 | eqtr4di | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑁  minMatR1  𝑅 )  =  ( 𝑚  ∈  ∅  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 28 | 1 | fveq2i | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 29 | 2 28 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 30 |  | matbas0pc | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ∅ ) | 
						
							| 31 | 29 30 | eqtrid | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  𝐵  =  ∅ ) | 
						
							| 32 | 31 | mpteq1d | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) )  =  ( 𝑚  ∈  ∅  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 33 | 27 32 | eqtr4d | ⊢ ( ¬  ( 𝑁  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑁  minMatR1  𝑅 )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) ) | 
						
							| 34 | 24 33 | pm2.61i | ⊢ ( 𝑁  minMatR1  𝑅 )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) | 
						
							| 35 | 3 34 | eqtri | ⊢ 𝑄  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑘 ,  if ( 𝑗  =  𝑙 ,   1  ,   0  ) ,  ( 𝑖 𝑚 𝑗 ) ) ) ) ) |