Step |
Hyp |
Ref |
Expression |
1 |
|
minmar1marrep.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
minmar1marrep.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
minmar1marrep.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 𝑁 minMatR1 𝑅 ) = ( 𝑁 minMatR1 𝑅 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
1 2 4 3 5
|
minmar1val0 |
⊢ ( 𝑀 ∈ 𝐵 → ( ( 𝑁 minMatR1 𝑅 ) ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 minMatR1 𝑅 ) ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( 𝑁 matRRep 𝑅 ) = ( 𝑁 matRRep 𝑅 ) |
13 |
1 2 12 5
|
marrepval0 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑀 ( 𝑁 matRRep 𝑅 ) 1 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
14 |
8 11 13
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑀 ( 𝑁 matRRep 𝑅 ) 1 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , ( 0g ‘ 𝑅 ) ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
15 |
7 14
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 minMatR1 𝑅 ) ‘ 𝑀 ) = ( 𝑀 ( 𝑁 matRRep 𝑅 ) 1 ) ) |