Step |
Hyp |
Ref |
Expression |
1 |
|
minmar1fval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
minmar1fval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
minmar1fval.q |
⊢ 𝑄 = ( 𝑁 minMatR1 𝑅 ) |
4 |
|
minmar1fval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
minmar1fval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
7 |
6
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
8 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) |
9 |
7 7 8
|
syl2anc |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) |
10 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
11 |
10
|
ifeq2d |
⊢ ( 𝑚 = 𝑀 → if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) = if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) |
12 |
11
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) |
13 |
12
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
14 |
1 2 3 4 5
|
minmar1fval |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑚 𝑗 ) ) ) ) ) |
15 |
13 14
|
fvmptg |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ∈ V ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |
16 |
9 15
|
mpdan |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑄 ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑘 , if ( 𝑗 = 𝑙 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ) ) |