Metamath Proof Explorer


Theorem mins1

Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins1 ( ( 𝐴 No 𝐵 No ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐴 )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐴 )
2 1 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐴 )
3 slerflex ( 𝐴 No 𝐴 ≤s 𝐴 )
4 3 ad2antrr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → 𝐴 ≤s 𝐴 )
5 2 4 eqbrtrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐴 )
6 iffalse ( ¬ 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐵 )
7 6 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐵 )
8 sletric ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )
9 8 orcanai ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → 𝐵 ≤s 𝐴 )
10 7 9 eqbrtrd ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐴 )
11 5 10 pm2.61dan ( ( 𝐴 No 𝐵 No ) → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐴 )