Metamath Proof Explorer


Theorem mins2

Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins2 ( 𝐵 No → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐵 )

Proof

Step Hyp Ref Expression
1 slerflex ( 𝐵 No 𝐵 ≤s 𝐵 )
2 iffalse ( ¬ 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐵 )
3 2 breq1d ( ¬ 𝐴 ≤s 𝐵 → ( if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐵𝐵 ≤s 𝐵 ) )
4 1 3 syl5ibrcom ( 𝐵 No → ( ¬ 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐵 ) )
5 iftrue ( 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) = 𝐴 )
6 id ( 𝐴 ≤s 𝐵𝐴 ≤s 𝐵 )
7 5 6 eqbrtrd ( 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐵 )
8 4 7 pm2.61d2 ( 𝐵 No → if ( 𝐴 ≤s 𝐵 , 𝐴 , 𝐵 ) ≤s 𝐵 )