| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | minveco.m | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | minveco.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | minveco.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 5 |  | minveco.u | ⊢ ( 𝜑  →  𝑈  ∈  CPreHilOLD ) | 
						
							| 6 |  | minveco.w | ⊢ ( 𝜑  →  𝑊  ∈  ( ( SubSp ‘ 𝑈 )  ∩  CBan ) ) | 
						
							| 7 |  | minveco.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 8 |  | eqid | ⊢ ( IndMet ‘ 𝑈 )  =  ( IndMet ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑈 ) )  =  ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑗  =  𝑦  →  ( 𝐴 𝑀 𝑗 )  =  ( 𝐴 𝑀 𝑦 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑗  =  𝑦  →  ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) )  =  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 12 | 11 | cbvmptv | ⊢ ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 13 | 12 | rneqi | ⊢ ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) )  =  ran  ( 𝑦  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | 
						
							| 14 |  | eqid | ⊢ inf ( ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑗  ∈  𝑌  ↦  ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) ,  ℝ ,   <  ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 13 14 | minvecolem7 | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) )  ≤  ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |