Metamath Proof Explorer


Theorem minveco

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
minveco.m 𝑀 = ( −𝑣𝑈 )
minveco.n 𝑁 = ( normCV𝑈 )
minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
minveco.a ( 𝜑𝐴𝑋 )
Assertion minveco ( 𝜑 → ∃! 𝑥𝑌𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 minveco.m 𝑀 = ( −𝑣𝑈 )
3 minveco.n 𝑁 = ( normCV𝑈 )
4 minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
5 minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
6 minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
7 minveco.a ( 𝜑𝐴𝑋 )
8 eqid ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 )
9 eqid ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑈 ) )
10 oveq2 ( 𝑗 = 𝑦 → ( 𝐴 𝑀 𝑗 ) = ( 𝐴 𝑀 𝑦 ) )
11 10 fveq2d ( 𝑗 = 𝑦 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
12 11 cbvmptv ( 𝑗𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
13 12 rneqi ran ( 𝑗𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
14 eqid inf ( ran ( 𝑗𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑗𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < )
15 1 2 3 4 5 6 7 8 9 13 14 minvecolem7 ( 𝜑 → ∃! 𝑥𝑌𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )