Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
eqid |
⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) |
9 |
|
eqid |
⊢ ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝐴 𝑀 𝑗 ) = ( 𝐴 𝑀 𝑦 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑗 = 𝑦 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
12 |
11
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
13 |
12
|
rneqi |
⊢ ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
14 |
|
eqid |
⊢ inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑗 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑗 ) ) ) , ℝ , < ) |
15 |
1 2 3 4 5 6 7 8 9 13 14
|
minvecolem7 |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |