Metamath Proof Explorer


Theorem minvecolem1

Description: Lemma for minveco . The set of all distances from points of Y to A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
minveco.m 𝑀 = ( −𝑣𝑈 )
minveco.n 𝑁 = ( normCV𝑈 )
minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
minveco.a ( 𝜑𝐴𝑋 )
minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
Assertion minvecolem1 ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )

Proof

Step Hyp Ref Expression
1 minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 minveco.m 𝑀 = ( −𝑣𝑈 )
3 minveco.n 𝑁 = ( normCV𝑈 )
4 minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
5 minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
6 minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
7 minveco.a ( 𝜑𝐴𝑋 )
8 minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
9 minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
10 minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
11 phnv ( 𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec )
12 5 11 syl ( 𝜑𝑈 ∈ NrmCVec )
13 12 adantr ( ( 𝜑𝑦𝑌 ) → 𝑈 ∈ NrmCVec )
14 7 adantr ( ( 𝜑𝑦𝑌 ) → 𝐴𝑋 )
15 elin ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) )
16 6 15 sylib ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) )
17 16 simpld ( 𝜑𝑊 ∈ ( SubSp ‘ 𝑈 ) )
18 eqid ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 )
19 1 4 18 sspba ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌𝑋 )
20 12 17 19 syl2anc ( 𝜑𝑌𝑋 )
21 20 sselda ( ( 𝜑𝑦𝑌 ) → 𝑦𝑋 )
22 1 2 nvmcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 )
23 13 14 21 22 syl3anc ( ( 𝜑𝑦𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 )
24 1 3 nvcl ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ )
25 13 23 24 syl2anc ( ( 𝜑𝑦𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ )
26 25 fmpttd ( 𝜑 → ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) : 𝑌 ⟶ ℝ )
27 26 frnd ( 𝜑 → ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ⊆ ℝ )
28 10 27 eqsstrid ( 𝜑𝑅 ⊆ ℝ )
29 16 simprd ( 𝜑𝑊 ∈ CBan )
30 bnnv ( 𝑊 ∈ CBan → 𝑊 ∈ NrmCVec )
31 eqid ( 0vec𝑊 ) = ( 0vec𝑊 )
32 4 31 nvzcl ( 𝑊 ∈ NrmCVec → ( 0vec𝑊 ) ∈ 𝑌 )
33 29 30 32 3syl ( 𝜑 → ( 0vec𝑊 ) ∈ 𝑌 )
34 fvex ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V
35 eqid ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
36 34 35 dmmpti dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = 𝑌
37 33 36 eleqtrrdi ( 𝜑 → ( 0vec𝑊 ) ∈ dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) )
38 37 ne0d ( 𝜑 → dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ )
39 dm0rn0 ( dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ )
40 10 eqeq1i ( 𝑅 = ∅ ↔ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ )
41 39 40 bitr4i ( dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ 𝑅 = ∅ )
42 41 necon3bii ( dom ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ ↔ 𝑅 ≠ ∅ )
43 38 42 sylib ( 𝜑𝑅 ≠ ∅ )
44 1 3 nvge0 ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
45 13 23 44 syl2anc ( ( 𝜑𝑦𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
46 45 ralrimiva ( 𝜑 → ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
47 34 rgenw 𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V
48 breq2 ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) )
49 35 48 ralrnmptw ( ∀ 𝑦𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) )
50 47 49 ax-mp ( ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
51 46 50 sylibr ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 )
52 10 raleqi ( ∀ 𝑤𝑅 0 ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 )
53 51 52 sylibr ( 𝜑 → ∀ 𝑤𝑅 0 ≤ 𝑤 )
54 28 43 53 3jca ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤𝑅 0 ≤ 𝑤 ) )