Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
15 |
|
elin |
⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
16 |
6 15
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
18 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
19 |
1 4 18
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
20 |
12 17 19
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
22 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
23 |
13 14 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
24 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
25 |
13 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
26 |
25
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) : 𝑌 ⟶ ℝ ) |
27 |
26
|
frnd |
⊢ ( 𝜑 → ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ⊆ ℝ ) |
28 |
10 27
|
eqsstrid |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
29 |
16
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ CBan ) |
30 |
|
bnnv |
⊢ ( 𝑊 ∈ CBan → 𝑊 ∈ NrmCVec ) |
31 |
|
eqid |
⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) |
32 |
4 31
|
nvzcl |
⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ 𝑌 ) |
33 |
29 30 32
|
3syl |
⊢ ( 𝜑 → ( 0vec ‘ 𝑊 ) ∈ 𝑌 ) |
34 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
35 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
36 |
34 35
|
dmmpti |
⊢ dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = 𝑌 |
37 |
33 36
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0vec ‘ 𝑊 ) ∈ dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
38 |
37
|
ne0d |
⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ ) |
39 |
|
dm0rn0 |
⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ) |
40 |
10
|
eqeq1i |
⊢ ( 𝑅 = ∅ ↔ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ) |
41 |
39 40
|
bitr4i |
⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ∅ ↔ 𝑅 = ∅ ) |
42 |
41
|
necon3bii |
⊢ ( dom ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ≠ ∅ ↔ 𝑅 ≠ ∅ ) |
43 |
38 42
|
sylib |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
44 |
1 3
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
45 |
13 23 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
47 |
34
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
48 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
49 |
35 48
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
50 |
47 49
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
51 |
46 50
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ) |
52 |
10
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) 0 ≤ 𝑤 ) |
53 |
51 52
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
54 |
28 43 53
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |