Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
12 |
|
minveco.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑌 ) |
13 |
|
minveco.1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
14 |
|
minveco.t |
⊢ 𝑇 = ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
15 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
16 |
1 8
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
5 15 16
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
18 |
9
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
19 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( 𝜑 → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4a |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
22 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
4
|
fvexi |
⊢ 𝑌 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
26 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
27 |
9
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
28 |
26 16 27
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
29 |
|
elin |
⊢ ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
30 |
6 29
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) ) |
31 |
30
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
32 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
33 |
1 4 32
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
34 |
26 31 33
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
35 |
|
xmetres2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
36 |
17 34 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
37 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
38 |
37
|
mopntopon |
⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
39 |
36 38
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ) |
40 |
|
lmcl |
⊢ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
41 |
39 21 40
|
syl2anc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 ) |
42 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
43 |
22 23 25 28 41 42 12
|
lmss |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
44 |
|
eqid |
⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) |
45 |
44 9 37
|
metrest |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
46 |
17 34 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) = ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
48 |
47
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽 ↾t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
49 |
43 48
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
50 |
21 49
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
51 |
|
funbrfv |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) ) |
52 |
20 50 51
|
sylc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) |
53 |
52 41
|
eqeltrd |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4b |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) |
55 |
1 2 3 8
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
56 |
26 7 54 55
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
58 |
1 8
|
imsmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
59 |
5 15 58
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
60 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) |
61 |
59 7 54 60
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ) |
63 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4c |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
65 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
66 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
67 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
68 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
69 |
65 66 67 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) |
70 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑦 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
71 |
65 69 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ℝ ) |
72 |
63 61
|
ltnled |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ ¬ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
73 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) |
74 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
75 |
61 63
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ) |
76 |
75
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
77 |
76
|
resqcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
78 |
63
|
resqcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
79 |
77 78
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
81 |
63 61 63
|
ltadd1d |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
82 |
63
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
83 |
82
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑆 ) = ( 𝑆 + 𝑆 ) ) |
84 |
83
|
breq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝑆 + 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
85 |
|
2re |
⊢ 2 ∈ ℝ |
86 |
|
2pos |
⊢ 0 < 2 |
87 |
85 86
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
88 |
87
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
89 |
|
ltmuldiv2 |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
90 |
63 75 88 89
|
syl3anc |
⊢ ( 𝜑 → ( ( 2 · 𝑆 ) < ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
91 |
81 84 90
|
3bitr2d |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
92 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
93 |
92
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
94 |
92
|
simp1d |
⊢ ( 𝜑 → 𝑅 ⊆ ℝ ) |
95 |
92
|
simp2d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
96 |
|
0re |
⊢ 0 ∈ ℝ |
97 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
98 |
97
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
99 |
98
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
100 |
96 93 99
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
101 |
96
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
102 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
103 |
94 95 100 101 102
|
syl31anc |
⊢ ( 𝜑 → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
104 |
93 103
|
mpbird |
⊢ ( 𝜑 → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
105 |
104 11
|
breqtrrdi |
⊢ ( 𝜑 → 0 ≤ 𝑆 ) |
106 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
107 |
59 7 54 106
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
108 |
61 63 107 105
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) |
109 |
|
divge0 |
⊢ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
110 |
75 108 88 109
|
syl21anc |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
111 |
63 76 105 110
|
lt2sqd |
⊢ ( 𝜑 → ( 𝑆 < ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↔ ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
112 |
78 77
|
posdifd |
⊢ ( 𝜑 → ( ( 𝑆 ↑ 2 ) < ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
113 |
91 111 112
|
3bitrd |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ↔ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
114 |
113
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
115 |
80 114
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ+ ) |
116 |
115
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ∈ ℝ+ ) |
117 |
14 116
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑇 ∈ ℝ+ ) |
118 |
117
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ) ) |
119 |
|
flge0nn0 |
⊢ ( ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ) → ( ⌊ ‘ 𝑇 ) ∈ ℕ0 ) |
120 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑇 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ) |
121 |
118 119 120
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ) |
122 |
121
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℤ ) |
123 |
50 52
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) |
125 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐴 ∈ 𝑋 ) |
126 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
127 |
126
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ* ) |
128 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝜑 ) |
129 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
130 |
121 129
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
131 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
132 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ 𝑋 ) |
133 |
12 34
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
134 |
133
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
135 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
136 |
131 132 134 135
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
137 |
128 130 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
138 |
137
|
resqcld |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
139 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑆 ∈ ℝ ) |
140 |
139
|
resqcld |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
141 |
130
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
142 |
140 141
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
143 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ∈ ℝ ) |
144 |
128 130 13
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ) |
145 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ∈ ℝ+ ) |
146 |
145
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ∈ ℝ ) |
147 |
|
reflcl |
⊢ ( 𝑇 ∈ ℝ → ( ⌊ ‘ 𝑇 ) ∈ ℝ ) |
148 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑇 ) ∈ ℝ → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
149 |
146 147 148
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
150 |
130
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑛 ∈ ℝ ) |
151 |
|
fllep1 |
⊢ ( 𝑇 ∈ ℝ → 𝑇 ≤ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) |
152 |
146 151
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ≤ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) |
153 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) |
154 |
153
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑇 ) + 1 ) ≤ 𝑛 ) |
155 |
146 149 150 152 154
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 𝑇 ≤ 𝑛 ) |
156 |
14 155
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ) |
157 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 1 ∈ ℝ ) |
158 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ) |
159 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
160 |
130
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 < 𝑛 ) |
161 |
|
lediv23 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ∈ ℝ ∧ 0 < ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
162 |
157 158 159 150 160 161
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 1 / ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
163 |
156 162
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) |
164 |
140 141 143
|
leaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ↔ ( 1 / 𝑛 ) ≤ ( ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) − ( 𝑆 ↑ 2 ) ) ) ) |
165 |
163 164
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
166 |
138 142 143 144 165
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) |
167 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ∈ ℝ ) |
168 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
169 |
131 132 134 168
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
170 |
128 130 169
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ) |
171 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → 0 ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
172 |
137 167 170 171
|
le2sqd |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↔ ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ↑ 2 ) ≤ ( ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ↑ 2 ) ) ) |
173 |
166 172
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑇 ) + 1 ) ) ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝑛 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
174 |
73 9 74 122 124 125 127 173
|
lmle |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) |
175 |
61 63 61
|
leadd2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ↔ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
176 |
61
|
recnd |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℂ ) |
177 |
176
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) = ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
178 |
177
|
breq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ) ) |
179 |
|
lemuldiv2 |
⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
180 |
87 179
|
mp3an3 |
⊢ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ∈ ℝ ) → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
181 |
61 75 180
|
syl2anc |
⊢ ( 𝜑 → ( ( 2 · ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
182 |
175 178 181
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ↔ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) ) |
183 |
182
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( ( ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) + 𝑆 ) / 2 ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
184 |
174 183
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
185 |
184
|
ex |
⊢ ( 𝜑 → ( 𝑆 < ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
186 |
72 185
|
sylbird |
⊢ ( 𝜑 → ( ¬ ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) ) |
187 |
186
|
pm2.18d |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ 𝑆 ) |
189 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
190 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
191 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
192 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
193 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
194 |
193
|
elrnmpt1 |
⊢ ( ( 𝑦 ∈ 𝑌 ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
195 |
191 192 194
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
196 |
195 10
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ 𝑅 ) |
197 |
|
infrelb |
⊢ ( ( 𝑅 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ 𝑅 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
198 |
189 190 196 197
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
199 |
11 198
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑆 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
200 |
62 64 71 188 199
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
201 |
57 200
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
202 |
201
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
203 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( 𝐴 𝑀 𝑥 ) = ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
204 |
203
|
fveq2d |
⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ) |
205 |
204
|
breq1d |
⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
206 |
205
|
ralbidv |
⊢ ( 𝑥 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
207 |
206
|
rspcev |
⊢ ( ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐹 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
208 |
53 202 207
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |