Metamath Proof Explorer


Theorem minvecolem4b

Description: Lemma for minveco . The convergent point of the cauchy sequence F is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
minveco.m 𝑀 = ( −𝑣𝑈 )
minveco.n 𝑁 = ( normCV𝑈 )
minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
minveco.a ( 𝜑𝐴𝑋 )
minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
minveco.s 𝑆 = inf ( 𝑅 , ℝ , < )
minveco.f ( 𝜑𝐹 : ℕ ⟶ 𝑌 )
minveco.1 ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) )
Assertion minvecolem4b ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ 𝐹 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 minveco.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 minveco.m 𝑀 = ( −𝑣𝑈 )
3 minveco.n 𝑁 = ( normCV𝑈 )
4 minveco.y 𝑌 = ( BaseSet ‘ 𝑊 )
5 minveco.u ( 𝜑𝑈 ∈ CPreHilOLD )
6 minveco.w ( 𝜑𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) )
7 minveco.a ( 𝜑𝐴𝑋 )
8 minveco.d 𝐷 = ( IndMet ‘ 𝑈 )
9 minveco.j 𝐽 = ( MetOpen ‘ 𝐷 )
10 minveco.r 𝑅 = ran ( 𝑦𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) )
11 minveco.s 𝑆 = inf ( 𝑅 , ℝ , < )
12 minveco.f ( 𝜑𝐹 : ℕ ⟶ 𝑌 )
13 minveco.1 ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹𝑛 ) ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + ( 1 / 𝑛 ) ) )
14 phnv ( 𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec )
15 5 14 syl ( 𝜑𝑈 ∈ NrmCVec )
16 elin ( 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ↔ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) )
17 6 16 sylib ( 𝜑 → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ∧ 𝑊 ∈ CBan ) )
18 17 simpld ( 𝜑𝑊 ∈ ( SubSp ‘ 𝑈 ) )
19 eqid ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 )
20 1 4 19 sspba ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌𝑋 )
21 15 18 20 syl2anc ( 𝜑𝑌𝑋 )
22 1 8 imsxmet ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
23 15 22 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
24 9 methaus ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus )
25 23 24 syl ( 𝜑𝐽 ∈ Haus )
26 lmfun ( 𝐽 ∈ Haus → Fun ( ⇝𝑡𝐽 ) )
27 25 26 syl ( 𝜑 → Fun ( ⇝𝑡𝐽 ) )
28 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem4a ( 𝜑𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) )
29 eqid ( 𝐽t 𝑌 ) = ( 𝐽t 𝑌 )
30 nnuz ℕ = ( ℤ ‘ 1 )
31 4 fvexi 𝑌 ∈ V
32 31 a1i ( 𝜑𝑌 ∈ V )
33 9 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
34 23 33 syl ( 𝜑𝐽 ∈ Top )
35 xmetres2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) )
36 23 21 35 syl2anc ( 𝜑 → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) )
37 eqid ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) )
38 37 mopntopon ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) )
39 36 38 syl ( 𝜑 → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) )
40 lmcl ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 )
41 39 28 40 syl2anc ( 𝜑 → ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ∈ 𝑌 )
42 1zzd ( 𝜑 → 1 ∈ ℤ )
43 29 30 32 34 41 42 12 lmss ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( 𝐽t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) )
44 eqid ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) )
45 44 9 37 metrest ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌𝑋 ) → ( 𝐽t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) )
46 23 21 45 syl2anc ( 𝜑 → ( 𝐽t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) )
47 46 fveq2d ( 𝜑 → ( ⇝𝑡 ‘ ( 𝐽t 𝑌 ) ) = ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) )
48 47 breqd ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( 𝐽t 𝑌 ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) )
49 43 48 bitrd ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ↔ 𝐹 ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) )
50 28 49 mpbird ( 𝜑𝐹 ( ⇝𝑡𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) )
51 funbrfv ( Fun ( ⇝𝑡𝐽 ) → ( 𝐹 ( ⇝𝑡𝐽 ) ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) → ( ( ⇝𝑡𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) ) )
52 27 50 51 sylc ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ 𝐹 ) = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ‘ 𝐹 ) )
53 52 41 eqeltrd ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ 𝐹 ) ∈ 𝑌 )
54 21 53 sseldd ( 𝜑 → ( ( ⇝𝑡𝐽 ) ‘ 𝐹 ) ∈ 𝑋 )