| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
| 6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
| 12 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 16 |
|
inss1 |
⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) |
| 17 |
16 6
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 18 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
| 19 |
1 4 18
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 20 |
13 17 19
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 22 |
1 2 3 8
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 23 |
14 15 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 24 |
23
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 27 |
26
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
| 28 |
26
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ≠ ∅ ) |
| 29 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ∈ ℝ ) |
| 30 |
26
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 31 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
| 32 |
31
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 33 |
32
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 34 |
29 30 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 35 |
|
infrecl |
⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 36 |
27 28 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 37 |
11 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
| 38 |
37
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 40 |
39
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + 0 ) = ( 𝑆 ↑ 2 ) ) |
| 41 |
24 40
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
| 42 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
| 43 |
14 15 21 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
| 44 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
| 45 |
14 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
| 46 |
1 3
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 47 |
14 43 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 48 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 49 |
27 28 34 29 48
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 50 |
30 49
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
| 51 |
50 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ 𝑆 ) |
| 52 |
45 37 47 51
|
le2sqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
| 53 |
11
|
breq2i |
⊢ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
| 54 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 55 |
27 28 34 45 54
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 56 |
53 55
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 57 |
41 52 56
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 58 |
10
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) |
| 59 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 60 |
59
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 61 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 62 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 63 |
61 62
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 64 |
60 63
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 65 |
58 64
|
bitri |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 66 |
57 65
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |