Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
12 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
16 |
|
inss1 |
⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) |
17 |
16 6
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
18 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
19 |
1 4 18
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
20 |
13 17 19
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
21 |
20
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
22 |
1 2 3 8
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
23 |
14 15 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
27 |
26
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
28 |
26
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ≠ ∅ ) |
29 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ∈ ℝ ) |
30 |
26
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
31 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
33 |
32
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
34 |
29 30 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
35 |
|
infrecl |
⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
36 |
27 28 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
37 |
11 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
38 |
37
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
40 |
39
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + 0 ) = ( 𝑆 ↑ 2 ) ) |
41 |
24 40
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
42 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
43 |
14 15 21 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
44 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
45 |
14 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
46 |
1 3
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
47 |
14 43 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
48 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
49 |
27 28 34 29 48
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
50 |
30 49
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
51 |
50 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ 𝑆 ) |
52 |
45 37 47 51
|
le2sqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
53 |
11
|
breq2i |
⊢ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
54 |
|
infregelb |
⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
55 |
27 28 34 45 54
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
56 |
53 55
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
57 |
41 52 56
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
58 |
10
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) |
59 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
60 |
59
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
61 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
62 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
63 |
61 62
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
64 |
60 63
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
65 |
58 64
|
bitri |
⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
66 |
57 65
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |