Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
minveco.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
minveco.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
minveco.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
5 |
|
minveco.u |
⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) |
6 |
|
minveco.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
7 |
|
minveco.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
minveco.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
9 |
|
minveco.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
10 |
|
minveco.r |
⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
|
minveco.s |
⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
minvecolem5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
13 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑈 ∈ CPreHilOLD ) |
14 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
15 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝐴 ∈ 𝑋 ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 0 ∈ ℝ ) |
18 |
|
0le0 |
⊢ 0 ≤ 0 |
19 |
18
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 0 ≤ 0 ) |
20 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑥 ∈ 𝑌 ) |
21 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑤 ∈ 𝑌 ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) |
23 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) |
24 |
1 2 3 4 13 14 15 8 9 10 11 17 19 20 21 22 23
|
minvecolem2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ) |
25 |
24
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11
|
minvecolem6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
27 |
26
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11
|
minvecolem6 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
29 |
28
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
30 |
27 29
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ↔ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) ) |
31 |
|
4cn |
⊢ 4 ∈ ℂ |
32 |
31
|
mul01i |
⊢ ( 4 · 0 ) = 0 |
33 |
32
|
breq2i |
⊢ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ↔ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ) |
34 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
35 |
5 34
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑈 ∈ NrmCVec ) |
37 |
1 8
|
imsmet |
⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
39 |
|
inss1 |
⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) |
40 |
39 6
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
41 |
|
eqid |
⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) |
42 |
1 4 41
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
43 |
35 40 42
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
45 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑌 ) |
46 |
44 45
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑋 ) |
47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑌 ) |
48 |
44 47
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑋 ) |
49 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑤 ) ∈ ℝ ) |
50 |
38 46 48 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑤 ) ∈ ℝ ) |
51 |
50
|
sqge0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) |
52 |
51
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) |
53 |
50
|
resqcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ∈ ℝ ) |
54 |
|
letri3 |
⊢ ( ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) |
55 |
53 16 54
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) |
56 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑤 ) ∈ ℂ ) |
57 |
|
sqeq0 |
⊢ ( ( 𝑥 𝐷 𝑤 ) ∈ ℂ → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( 𝑥 𝐷 𝑤 ) = 0 ) ) |
58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( 𝑥 𝐷 𝑤 ) = 0 ) ) |
59 |
|
meteq0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑤 ) = 0 ↔ 𝑥 = 𝑤 ) ) |
60 |
38 46 48 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑥 𝐷 𝑤 ) = 0 ↔ 𝑥 = 𝑤 ) ) |
61 |
58 60
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ 𝑥 = 𝑤 ) ) |
62 |
52 55 61
|
3bitr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ↔ 𝑥 = 𝑤 ) ) |
63 |
33 62
|
syl5bb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ↔ 𝑥 = 𝑤 ) ) |
64 |
25 30 63
|
3imtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) |
65 |
64
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) |
66 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐴 𝑀 𝑥 ) = ( 𝐴 𝑀 𝑤 ) ) |
67 |
66
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ) |
68 |
67
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
69 |
68
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
70 |
69
|
reu4 |
⊢ ( ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) ) |
71 |
12 65 70
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |