Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirauto.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝑇 ) |
8 |
|
mirauto.x |
⊢ 𝑋 = ( 𝑀 ‘ 𝐴 ) |
9 |
|
mirauto.y |
⊢ 𝑌 = ( 𝑀 ‘ 𝐵 ) |
10 |
|
mirauto.z |
⊢ 𝑍 = ( 𝑀 ‘ 𝐶 ) |
11 |
|
mirauto.0 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
12 |
|
mirauto.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
13 |
|
mirauto.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
14 |
|
mirauto.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
15 |
|
mirauto.4 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) = 𝐶 ) |
16 |
1 2 3 4 5 6 11 7
|
mirf |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |
17 |
16 12
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
18 |
8 17
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
19 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) |
20 |
16 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
21 |
9 20
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
22 |
16 14
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐶 ) ∈ 𝑃 ) |
23 |
10 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
24 |
15 14
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝑃 ) |
25 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
26 |
1 2 3 4 5 6 12 25 13
|
mircgr |
⊢ ( 𝜑 → ( 𝐴 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
27 |
1 2 3 4 5 6 11 7 12 24 12 13 26
|
mircgrs |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) ) |
28 |
8
|
a1i |
⊢ ( 𝜑 → 𝑋 = ( 𝑀 ‘ 𝐴 ) ) |
29 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) = ( 𝑀 ‘ 𝐶 ) ) |
30 |
10 29
|
eqtr4id |
⊢ ( 𝜑 → 𝑍 = ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
31 |
28 30
|
oveq12d |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
32 |
8 9
|
oveq12i |
⊢ ( 𝑋 − 𝑌 ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) ) |
34 |
27 31 33
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( 𝑋 − 𝑌 ) ) |
35 |
1 2 3 4 5 6 12 25 13
|
mirbtwn |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) 𝐼 𝐵 ) ) |
36 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐵 ) 𝐼 𝐵 ) = ( 𝐶 𝐼 𝐵 ) ) |
37 |
35 36
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
38 |
1 2 3 4 5 6 11 7 14 12 13 37
|
mirbtwni |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( 𝑀 ‘ 𝐵 ) ) ) |
39 |
10 9
|
oveq12i |
⊢ ( 𝑍 𝐼 𝑌 ) = ( ( 𝑀 ‘ 𝐶 ) 𝐼 ( 𝑀 ‘ 𝐵 ) ) |
40 |
38 8 39
|
3eltr4g |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) |
41 |
1 2 3 4 5 6 18 19 21 23 34 40
|
ismir |
⊢ ( 𝜑 → 𝑍 = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) |
42 |
41
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑍 ) |