Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
9 |
|
miriso.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
10 |
|
miriso.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
11 |
|
mirbtwnb.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐺 ∈ TarskiG ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝐴 ∈ 𝑃 ) |
14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑋 ∈ 𝑃 ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ 𝑃 ) |
16 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑍 ∈ 𝑃 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
18 |
1 2 3 4 5 12 13 8 14 15 16 17
|
mirbtwni |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝐺 ∈ TarskiG ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝐴 ∈ 𝑃 ) |
21 |
1 2 3 4 5 19 20 8
|
mirf |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑀 : 𝑃 ⟶ 𝑃 ) |
22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑋 ∈ 𝑃 ) |
23 |
21 22
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝑃 ) |
24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑌 ∈ 𝑃 ) |
25 |
21 24
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑍 ∈ 𝑃 ) |
27 |
21 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑍 ) ∈ 𝑃 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) |
29 |
1 2 3 4 5 19 20 8 23 25 27 28
|
mirbtwni |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ) |
30 |
1 2 3 4 5 6 7 8 10
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) = 𝑌 ) |
31 |
1 2 3 4 5 6 7 8 9
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
32 |
1 2 3 4 5 6 7 8 11
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) = 𝑍 ) |
33 |
31 32
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) = ( 𝑋 𝐼 𝑍 ) ) |
34 |
30 33
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑌 ) ) ∈ ( ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) 𝐼 ( 𝑀 ‘ ( 𝑀 ‘ 𝑍 ) ) ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
36 |
29 35
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) → 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) |
37 |
18 36
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ↔ ( 𝑀 ‘ 𝑌 ) ∈ ( ( 𝑀 ‘ 𝑋 ) 𝐼 ( 𝑀 ‘ 𝑍 ) ) ) ) |