Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirtrcgr.e |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
8 |
|
mirtrcgr.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐵 ) |
9 |
|
mirtrcgr.n |
⊢ 𝑁 = ( 𝑆 ‘ 𝑌 ) |
10 |
|
mirtrcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
11 |
|
mirtrcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
12 |
|
mirtrcgr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
13 |
|
mirtrcgr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
14 |
|
mircgrextend.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝑋 − 𝑌 ) ) |
15 |
1 2 3 4 5 6 11 8 10
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
16 |
1 2 3 4 5 6 13 9 12
|
mircl |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝑃 ) |
17 |
1 2 3 4 5 6 11 8 10
|
mirbtwn |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝑀 ‘ 𝐴 ) 𝐼 𝐴 ) ) |
18 |
1 2 3 6 15 11 10 17
|
tgbtwncom |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
19 |
1 2 3 4 5 6 13 9 12
|
mirbtwn |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑁 ‘ 𝑋 ) 𝐼 𝑋 ) ) |
20 |
1 2 3 6 16 13 12 19
|
tgbtwncom |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 𝐼 ( 𝑁 ‘ 𝑋 ) ) ) |
21 |
1 2 3 6 10 11 12 13 14
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝑌 − 𝑋 ) ) |
22 |
1 2 3 4 5 6 11 8 10
|
mircgr |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑀 ‘ 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
23 |
1 2 3 4 5 6 13 9 12
|
mircgr |
⊢ ( 𝜑 → ( 𝑌 − ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 − 𝑋 ) ) |
24 |
21 22 23
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐵 − ( 𝑀 ‘ 𝐴 ) ) = ( 𝑌 − ( 𝑁 ‘ 𝑋 ) ) ) |
25 |
1 2 3 6 10 11 15 12 13 16 18 20 14 24
|
tgcgrextend |
⊢ ( 𝜑 → ( 𝐴 − ( 𝑀 ‘ 𝐴 ) ) = ( 𝑋 − ( 𝑁 ‘ 𝑋 ) ) ) |