Metamath Proof Explorer
		
		
		
		Description:  Closure of the point inversion function.  (Contributed by Thierry
           Arnoux, 20-Oct-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						mirval.p | 
						⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mirval.d | 
						⊢  −   =  ( dist ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mirval.i | 
						⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mirval.l | 
						⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mirval.s | 
						⊢ 𝑆  =  ( pInvG ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mirval.g | 
						⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
					
					
						 | 
						 | 
						mirval.a | 
						⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
					
					
						 | 
						 | 
						mirfv.m | 
						⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 )  | 
					
					
						 | 
						 | 
						mircl.x | 
						⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
					
				
					 | 
					Assertion | 
					mircl | 
					⊢  ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ∈  𝑃 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mirval.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mirval.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							mirval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							mirval.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							mirval.s | 
							⊢ 𝑆  =  ( pInvG ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							mirval.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 7 | 
							
								
							 | 
							mirval.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							mirfv.m | 
							⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							mircl.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8
							 | 
							mirf | 
							⊢ ( 𝜑  →  𝑀 : 𝑃 ⟶ 𝑃 )  | 
						
						
							| 11 | 
							
								10 9
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  ∈  𝑃 )  |