Metamath Proof Explorer


Theorem mirf

Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
Assertion mirf ( 𝜑𝑀 : 𝑃𝑃 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 riotaex ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ∈ V
10 9 a1i ( ( 𝜑𝑦𝑃 ) → ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ∈ V )
11 1 2 3 4 5 6 7 mirval ( 𝜑 → ( 𝑆𝐴 ) = ( 𝑦𝑃 ↦ ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) )
12 8 11 syl5eq ( 𝜑𝑀 = ( 𝑦𝑃 ↦ ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) )
13 6 adantr ( ( 𝜑𝑥𝑃 ) → 𝐺 ∈ TarskiG )
14 7 adantr ( ( 𝜑𝑥𝑃 ) → 𝐴𝑃 )
15 simpr ( ( 𝜑𝑥𝑃 ) → 𝑥𝑃 )
16 1 2 3 4 5 13 14 8 15 mirfv ( ( 𝜑𝑥𝑃 ) → ( 𝑀𝑥 ) = ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑥 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑥 ) ) ) )
17 1 2 3 13 15 14 mirreu3 ( ( 𝜑𝑥𝑃 ) → ∃! 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑥 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑥 ) ) )
18 riotacl ( ∃! 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑥 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑥 ) ) → ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑥 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑥 ) ) ) ∈ 𝑃 )
19 17 18 syl ( ( 𝜑𝑥𝑃 ) → ( 𝑧𝑃 ( ( 𝐴 𝑧 ) = ( 𝐴 𝑥 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑥 ) ) ) ∈ 𝑃 )
20 16 19 eqeltrd ( ( 𝜑𝑥𝑃 ) → ( 𝑀𝑥 ) ∈ 𝑃 )
21 10 12 20 fmpt2d ( 𝜑𝑀 : 𝑃𝑃 )