| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 9 |
1 2 3 4 5 6 7 8
|
mirf |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |
| 10 |
9
|
ffnd |
⊢ ( 𝜑 → 𝑀 Fn 𝑃 ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝐺 ∈ TarskiG ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝐴 ∈ 𝑃 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ 𝑃 ) |
| 14 |
1 2 3 4 5 11 12 8 13
|
mirmir |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) ) = 𝑎 ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) ) = 𝑎 ) |
| 16 |
|
nvocnv |
⊢ ( ( 𝑀 : 𝑃 ⟶ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) ) = 𝑎 ) → ◡ 𝑀 = 𝑀 ) |
| 17 |
9 15 16
|
syl2anc |
⊢ ( 𝜑 → ◡ 𝑀 = 𝑀 ) |
| 18 |
|
nvof1o |
⊢ ( ( 𝑀 Fn 𝑃 ∧ ◡ 𝑀 = 𝑀 ) → 𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |
| 19 |
10 17 18
|
syl2anc |
⊢ ( 𝜑 → 𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |