Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
9 |
|
mirfv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
10 |
1 2 3 4 5 6 7
|
mirval |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |
11 |
8 10
|
syl5eq |
⊢ ( 𝜑 → 𝑀 = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑦 = 𝐵 ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝐴 − 𝑦 ) = ( 𝐴 − 𝐵 ) ) |
14 |
13
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ↔ ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ) ) |
15 |
12
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝐼 𝐵 ) ) |
16 |
15
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ↔ ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ) |
18 |
17
|
riotabidva |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) = ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ) |
19 |
|
riotaex |
⊢ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ∈ V ) |
21 |
11 18 9 20
|
fvmptd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) = ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝐵 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝐵 ) ) ) ) |